{"title":"磁性纳米复合材料(Fe3O4-GO-SO3H)作为高级纳米吸附剂对地高辛的高效去除","authors":"Paria Pashazadeh-Panahi, M. Hasanzadeh","doi":"10.1080/20550324.2020.1776493","DOIUrl":null,"url":null,"abstract":"Abstract Digoxin separation from pharmaceuticals wastes, is small piece of the larger puzzle in holistic risk assessment. In this study, a novel magnetic nano composite (graphene oxide/Fe3O4/SO3H) was synthesized and used as an absorbent for the removal of digoxin from aqueous solution. We utilized UV-Vis spectrophotometry (UV/Vis) for detection and efficient removal of digoxin by magnetic graphene oxide (MGO) in different concentrations. Magnetic absorbent was characterized by thermal gravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The optimized concentration of absorbent and digoxin were 500 and 1 ppm respectively, in which the optimize reaction time was lasting 10 min. Finally, under optimized condition, MGO was used for the efficient separation of digoxin from aqueous solution. GRAPHICAL ABSTRACT","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Efficient removal of digoxin from aqueous solution using magnetic nanocomposite (Fe3O4–GO–SO3H) as an advanced nano-absorbent\",\"authors\":\"Paria Pashazadeh-Panahi, M. Hasanzadeh\",\"doi\":\"10.1080/20550324.2020.1776493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Digoxin separation from pharmaceuticals wastes, is small piece of the larger puzzle in holistic risk assessment. In this study, a novel magnetic nano composite (graphene oxide/Fe3O4/SO3H) was synthesized and used as an absorbent for the removal of digoxin from aqueous solution. We utilized UV-Vis spectrophotometry (UV/Vis) for detection and efficient removal of digoxin by magnetic graphene oxide (MGO) in different concentrations. Magnetic absorbent was characterized by thermal gravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The optimized concentration of absorbent and digoxin were 500 and 1 ppm respectively, in which the optimize reaction time was lasting 10 min. Finally, under optimized condition, MGO was used for the efficient separation of digoxin from aqueous solution. GRAPHICAL ABSTRACT\",\"PeriodicalId\":18872,\"journal\":{\"name\":\"Nanocomposites\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2020-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanocomposites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/20550324.2020.1776493\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanocomposites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/20550324.2020.1776493","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Efficient removal of digoxin from aqueous solution using magnetic nanocomposite (Fe3O4–GO–SO3H) as an advanced nano-absorbent
Abstract Digoxin separation from pharmaceuticals wastes, is small piece of the larger puzzle in holistic risk assessment. In this study, a novel magnetic nano composite (graphene oxide/Fe3O4/SO3H) was synthesized and used as an absorbent for the removal of digoxin from aqueous solution. We utilized UV-Vis spectrophotometry (UV/Vis) for detection and efficient removal of digoxin by magnetic graphene oxide (MGO) in different concentrations. Magnetic absorbent was characterized by thermal gravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The optimized concentration of absorbent and digoxin were 500 and 1 ppm respectively, in which the optimize reaction time was lasting 10 min. Finally, under optimized condition, MGO was used for the efficient separation of digoxin from aqueous solution. GRAPHICAL ABSTRACT