{"title":"主网络对中agami-m衰落信道频谱共享系统性能的影响","authors":"Fahim Khan, T. Khan, M. Fahad","doi":"10.4172/2325-9833.1000167","DOIUrl":null,"url":null,"abstract":"Cognitive radio is an emerging radio technology that can improve the efficiency of the radio spectrum utilization. Cognitive radio senses the vacant space in the radio spectrum by changing its operating parameters and uses the vacant spectrum in an opportunistic way and immediately vacates the spectrum bands once the primary user (PU) is detected. The cognitive radio efficiently uses radio spectrum by operating in both licensed and unlicensed bands and avoids the interference with the licensed or unlicensed users. The PU holds the license for a particular band and has the priority to use the channel. The secondary user (SU) can use the vacant bands as long as they do not affect the PU transmission. However, previous research work has ignored the effect of interference from primary networks on the performance of spectrum sharing system. In this paper, the performance of amplify-and-forward relay networks, where the interference from the primary networks is considered, is studied. We considered the impact of the primary transmitter on the spectrum sharing system in the presence of a Nakagami-m fading channel, where the fading parameter m (m is an integer) can be used to deal with a variety of channel scenarios. A closed-form of Nakagami-m fading channel is derived. Derivation is based on the system model composed by secondary users, primary users and amplify-and-forward relay.","PeriodicalId":44634,"journal":{"name":"SAE International Journal of Passenger Cars-Electronic and Electrical Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Primary Network on Performance of Spectrum Sharing System over Nakagami-m Fading Channel\",\"authors\":\"Fahim Khan, T. Khan, M. Fahad\",\"doi\":\"10.4172/2325-9833.1000167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cognitive radio is an emerging radio technology that can improve the efficiency of the radio spectrum utilization. Cognitive radio senses the vacant space in the radio spectrum by changing its operating parameters and uses the vacant spectrum in an opportunistic way and immediately vacates the spectrum bands once the primary user (PU) is detected. The cognitive radio efficiently uses radio spectrum by operating in both licensed and unlicensed bands and avoids the interference with the licensed or unlicensed users. The PU holds the license for a particular band and has the priority to use the channel. The secondary user (SU) can use the vacant bands as long as they do not affect the PU transmission. However, previous research work has ignored the effect of interference from primary networks on the performance of spectrum sharing system. In this paper, the performance of amplify-and-forward relay networks, where the interference from the primary networks is considered, is studied. We considered the impact of the primary transmitter on the spectrum sharing system in the presence of a Nakagami-m fading channel, where the fading parameter m (m is an integer) can be used to deal with a variety of channel scenarios. A closed-form of Nakagami-m fading channel is derived. Derivation is based on the system model composed by secondary users, primary users and amplify-and-forward relay.\",\"PeriodicalId\":44634,\"journal\":{\"name\":\"SAE International Journal of Passenger Cars-Electronic and Electrical Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAE International Journal of Passenger Cars-Electronic and Electrical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2325-9833.1000167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE International Journal of Passenger Cars-Electronic and Electrical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2325-9833.1000167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
摘要
认知无线电是一种新兴的无线电技术,可以提高无线电频谱的利用效率。认知无线电通过改变其工作参数来感知无线电频谱中的空闲空间,并以机会主义的方式利用空闲频谱,一旦检测到主用户(PU),立即腾出频谱频段。认知无线电通过在许可和未许可的频段上运行,有效地利用了无线电频谱,避免了对许可和未许可用户的干扰。PU持有特定频段的license,优先使用该信道。在不影响PU传输的前提下,secondary user (SU)可以使用空闲频段。然而,以往的研究工作忽略了主网干扰对频谱共享系统性能的影响。本文研究了在考虑主网络干扰的情况下,放大转发中继网络的性能。我们考虑了在存在Nakagami-m衰落信道的情况下,主发射机对频谱共享系统的影响,其中衰落参数m (m为整数)可用于处理各种信道场景。导出了一种封闭形式的Nakagami-m衰落信道。推导基于由二次用户、主用户和放大转发继电器组成的系统模型。
Effect of Primary Network on Performance of Spectrum Sharing System over Nakagami-m Fading Channel
Cognitive radio is an emerging radio technology that can improve the efficiency of the radio spectrum utilization. Cognitive radio senses the vacant space in the radio spectrum by changing its operating parameters and uses the vacant spectrum in an opportunistic way and immediately vacates the spectrum bands once the primary user (PU) is detected. The cognitive radio efficiently uses radio spectrum by operating in both licensed and unlicensed bands and avoids the interference with the licensed or unlicensed users. The PU holds the license for a particular band and has the priority to use the channel. The secondary user (SU) can use the vacant bands as long as they do not affect the PU transmission. However, previous research work has ignored the effect of interference from primary networks on the performance of spectrum sharing system. In this paper, the performance of amplify-and-forward relay networks, where the interference from the primary networks is considered, is studied. We considered the impact of the primary transmitter on the spectrum sharing system in the presence of a Nakagami-m fading channel, where the fading parameter m (m is an integer) can be used to deal with a variety of channel scenarios. A closed-form of Nakagami-m fading channel is derived. Derivation is based on the system model composed by secondary users, primary users and amplify-and-forward relay.