慢动力学固体的内变量建模:波传播和共振模拟

H. Berjamin, G. Chiavassa, N. Favrie, B. Lombard, E. Sarrouy
{"title":"慢动力学固体的内变量建模:波传播和共振模拟","authors":"H. Berjamin, G. Chiavassa, N. Favrie, B. Lombard, E. Sarrouy","doi":"10.1121/2.0000844","DOIUrl":null,"url":null,"abstract":"Rocks and concrete are known to soften under a dynamic loading, i.e. the speed of sound diminishes with forcing amplitudes. To reproduce this behavior, an internal-variable model of continuum is proposed. It is composed of a constitutive law for the stress and an evolution equation for the internal variable. Nonlinear viscoelasticity of Zener type is accounted for by using additional internal variables. The proposed system of partial differential equations is solved numerically using finite-volume methods. The numerical tool is used to reproduce qualitatively Nonlinear Resonance Ultrasound Spectroscopy (NRUS) and Dynamic Acoustoelastic Testing (DAET) experiments. A frequency-domain approach based on finite elements, harmonic balance and numerical continuation is compared to the time-domain method. This approach is promising for upcoming experimental validations with respect to resonance experiments.","PeriodicalId":20469,"journal":{"name":"Proc. Meet. Acoust.","volume":"216 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Internal-variable modeling of solids with slow dynamics: Wave propagation and resonance simulations\",\"authors\":\"H. Berjamin, G. Chiavassa, N. Favrie, B. Lombard, E. Sarrouy\",\"doi\":\"10.1121/2.0000844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rocks and concrete are known to soften under a dynamic loading, i.e. the speed of sound diminishes with forcing amplitudes. To reproduce this behavior, an internal-variable model of continuum is proposed. It is composed of a constitutive law for the stress and an evolution equation for the internal variable. Nonlinear viscoelasticity of Zener type is accounted for by using additional internal variables. The proposed system of partial differential equations is solved numerically using finite-volume methods. The numerical tool is used to reproduce qualitatively Nonlinear Resonance Ultrasound Spectroscopy (NRUS) and Dynamic Acoustoelastic Testing (DAET) experiments. A frequency-domain approach based on finite elements, harmonic balance and numerical continuation is compared to the time-domain method. This approach is promising for upcoming experimental validations with respect to resonance experiments.\",\"PeriodicalId\":20469,\"journal\":{\"name\":\"Proc. Meet. Acoust.\",\"volume\":\"216 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proc. Meet. Acoust.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1121/2.0000844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. Meet. Acoust.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/2.0000844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

岩石和混凝土在动荷载作用下会变软,即声速随着力的振幅而减小。为了再现这种行为,提出了连续统的内变量模型。它由应力的本构律和内变量的演化方程组成。采用附加内变量来解释齐纳型的非线性粘弹性。采用有限体积法对所提出的偏微分方程组进行了数值求解。该数值工具用于定性再现非线性共振超声光谱(NRUS)和动态声弹性测试(DAET)实验。将基于有限元、谐波平衡和数值延拓的频域方法与时域方法进行了比较。该方法有望用于即将到来的共振实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Internal-variable modeling of solids with slow dynamics: Wave propagation and resonance simulations
Rocks and concrete are known to soften under a dynamic loading, i.e. the speed of sound diminishes with forcing amplitudes. To reproduce this behavior, an internal-variable model of continuum is proposed. It is composed of a constitutive law for the stress and an evolution equation for the internal variable. Nonlinear viscoelasticity of Zener type is accounted for by using additional internal variables. The proposed system of partial differential equations is solved numerically using finite-volume methods. The numerical tool is used to reproduce qualitatively Nonlinear Resonance Ultrasound Spectroscopy (NRUS) and Dynamic Acoustoelastic Testing (DAET) experiments. A frequency-domain approach based on finite elements, harmonic balance and numerical continuation is compared to the time-domain method. This approach is promising for upcoming experimental validations with respect to resonance experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信