技术分析的数学分析

Q3 Mathematics
Matthew J. Lorig, Zhou Zhou, B. Zou
{"title":"技术分析的数学分析","authors":"Matthew J. Lorig, Zhou Zhou, B. Zou","doi":"10.1080/1350486X.2019.1588136","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, we investigate trading strategies based on exponential moving averages (ExpMAs) of an underlying risky asset. We study both logarithmic utility maximization and long-term growth rate maximization problems and find closed-form solutions when the drift of the underlying is modelled by either an Ornstein-Uhlenbeck process or a two-state continuous-time Markov chain. For the case of an Ornstein-Uhlenbeck drift, we carry out several Monte Carlo experiments in order to investigate how the performance of optimal ExpMA strategies is affected by variations in model parameters and by transaction costs.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Mathematical Analysis of Technical Analysis\",\"authors\":\"Matthew J. Lorig, Zhou Zhou, B. Zou\",\"doi\":\"10.1080/1350486X.2019.1588136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this paper, we investigate trading strategies based on exponential moving averages (ExpMAs) of an underlying risky asset. We study both logarithmic utility maximization and long-term growth rate maximization problems and find closed-form solutions when the drift of the underlying is modelled by either an Ornstein-Uhlenbeck process or a two-state continuous-time Markov chain. For the case of an Ornstein-Uhlenbeck drift, we carry out several Monte Carlo experiments in order to investigate how the performance of optimal ExpMA strategies is affected by variations in model parameters and by transaction costs.\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486X.2019.1588136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2019.1588136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

摘要本文研究了基于指数移动平均线(expma)的风险资产交易策略。我们研究了对数效用最大化和长期增长率最大化问题,并找到了当底层漂移由Ornstein-Uhlenbeck过程或两态连续时间马尔可夫链建模时的封闭形式解。对于Ornstein-Uhlenbeck漂移的情况,我们进行了几个蒙特卡罗实验,以研究最优ExpMA策略的性能如何受到模型参数变化和交易成本的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Mathematical Analysis of Technical Analysis
ABSTRACT In this paper, we investigate trading strategies based on exponential moving averages (ExpMAs) of an underlying risky asset. We study both logarithmic utility maximization and long-term growth rate maximization problems and find closed-form solutions when the drift of the underlying is modelled by either an Ornstein-Uhlenbeck process or a two-state continuous-time Markov chain. For the case of an Ornstein-Uhlenbeck drift, we carry out several Monte Carlo experiments in order to investigate how the performance of optimal ExpMA strategies is affected by variations in model parameters and by transaction costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信