{"title":"甘迪力学原理的范畴论解释","authors":"Joseph Razavi, A. Schalk","doi":"10.4204/EPTCS.293.7","DOIUrl":null,"url":null,"abstract":"Based on Gandy's principles for models of computation we give category-theoretic axioms describing locally deterministic updates to finite objects. Rather than fixing a particular category of states, we describe what properties such a category should have. The computation is modelled by a functor that encodes updating the computation, and we give an abstract account of such functors. We show that every updating functor satisfying our conditions is computable.","PeriodicalId":10720,"journal":{"name":"CoRR","volume":"70 1","pages":"85-92"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Category Theoretic Interpretation of Gandy's Principles for Mechanisms\",\"authors\":\"Joseph Razavi, A. Schalk\",\"doi\":\"10.4204/EPTCS.293.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on Gandy's principles for models of computation we give category-theoretic axioms describing locally deterministic updates to finite objects. Rather than fixing a particular category of states, we describe what properties such a category should have. The computation is modelled by a functor that encodes updating the computation, and we give an abstract account of such functors. We show that every updating functor satisfying our conditions is computable.\",\"PeriodicalId\":10720,\"journal\":{\"name\":\"CoRR\",\"volume\":\"70 1\",\"pages\":\"85-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CoRR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.293.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CoRR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.293.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Category Theoretic Interpretation of Gandy's Principles for Mechanisms
Based on Gandy's principles for models of computation we give category-theoretic axioms describing locally deterministic updates to finite objects. Rather than fixing a particular category of states, we describe what properties such a category should have. The computation is modelled by a functor that encodes updating the computation, and we give an abstract account of such functors. We show that every updating functor satisfying our conditions is computable.