甘迪力学原理的范畴论解释

CoRR Pub Date : 2019-02-01 DOI:10.4204/EPTCS.293.7
Joseph Razavi, A. Schalk
{"title":"甘迪力学原理的范畴论解释","authors":"Joseph Razavi, A. Schalk","doi":"10.4204/EPTCS.293.7","DOIUrl":null,"url":null,"abstract":"Based on Gandy's principles for models of computation we give category-theoretic axioms describing locally deterministic updates to finite objects. Rather than fixing a particular category of states, we describe what properties such a category should have. The computation is modelled by a functor that encodes updating the computation, and we give an abstract account of such functors. We show that every updating functor satisfying our conditions is computable.","PeriodicalId":10720,"journal":{"name":"CoRR","volume":"70 1","pages":"85-92"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Category Theoretic Interpretation of Gandy's Principles for Mechanisms\",\"authors\":\"Joseph Razavi, A. Schalk\",\"doi\":\"10.4204/EPTCS.293.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on Gandy's principles for models of computation we give category-theoretic axioms describing locally deterministic updates to finite objects. Rather than fixing a particular category of states, we describe what properties such a category should have. The computation is modelled by a functor that encodes updating the computation, and we give an abstract account of such functors. We show that every updating functor satisfying our conditions is computable.\",\"PeriodicalId\":10720,\"journal\":{\"name\":\"CoRR\",\"volume\":\"70 1\",\"pages\":\"85-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CoRR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.293.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CoRR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.293.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于Gandy的计算模型原理,给出了描述有限对象局部确定性更新的范畴论公理。我们不是固定一个特定的状态类别,而是描述这样一个类别应该具有什么属性。计算用一个对更新计算进行编码的函子来建模,并给出了这些函子的抽象描述。我们证明了每一个满足条件的更新函子都是可计算的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Category Theoretic Interpretation of Gandy's Principles for Mechanisms
Based on Gandy's principles for models of computation we give category-theoretic axioms describing locally deterministic updates to finite objects. Rather than fixing a particular category of states, we describe what properties such a category should have. The computation is modelled by a functor that encodes updating the computation, and we give an abstract account of such functors. We show that every updating functor satisfying our conditions is computable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信