多二次或四次循环数域的Kummer理论

Flavio Perissinotto, Antonella Perucca
{"title":"多二次或四次循环数域的Kummer理论","authors":"Flavio Perissinotto, Antonella Perucca","doi":"10.2478/udt-2022-0017","DOIUrl":null,"url":null,"abstract":"Abstract Let K be a number field which is multiquadratic or quartic cyclic. We prove several results about the Kummer extensions of K, namely concerning the intersection between the Kummer extensions and the cyclotomic extensions of K. For G a finitely generated subgroup of K×, we consider the cyclotomic-Kummer extensions K(ζnt,Gn)/K(ζnt) K\\left( {{\\zeta _{nt}},\\root n \\of G } \\right)/K\\left( {{\\zeta _{nt}}} \\right) for all positive integers n and t, and we describe an explicit finite procedure to compute at once the degree of all these extensions.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"11 1","pages":"165 - 194"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Kummer Theory for Multiquadratic or Quartic Cyclic Number Fields\",\"authors\":\"Flavio Perissinotto, Antonella Perucca\",\"doi\":\"10.2478/udt-2022-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let K be a number field which is multiquadratic or quartic cyclic. We prove several results about the Kummer extensions of K, namely concerning the intersection between the Kummer extensions and the cyclotomic extensions of K. For G a finitely generated subgroup of K×, we consider the cyclotomic-Kummer extensions K(ζnt,Gn)/K(ζnt) K\\\\left( {{\\\\zeta _{nt}},\\\\root n \\\\of G } \\\\right)/K\\\\left( {{\\\\zeta _{nt}}} \\\\right) for all positive integers n and t, and we describe an explicit finite procedure to compute at once the degree of all these extensions.\",\"PeriodicalId\":23390,\"journal\":{\"name\":\"Uniform distribution theory\",\"volume\":\"11 1\",\"pages\":\"165 - 194\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uniform distribution theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/udt-2022-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2022-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要设K为一个多二次或四次循环的数域。我们证明了关于K的Kummer扩展的几个结果,即关于K的Kummer扩展与K的环裂扩展之间的相交。对于kx的有限生成子群G,我们考虑对于所有正整数n和t, K(ζnt,Gn)/K(ζnt) K \left ({{\zeta _nt{, }}\root n \of G }\right)/K \left ({{\zeta _nt{}}}\right)的环裂-Kummer扩展。并且我们描述了一个显式的有限过程来一次计算所有这些扩展的程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kummer Theory for Multiquadratic or Quartic Cyclic Number Fields
Abstract Let K be a number field which is multiquadratic or quartic cyclic. We prove several results about the Kummer extensions of K, namely concerning the intersection between the Kummer extensions and the cyclotomic extensions of K. For G a finitely generated subgroup of K×, we consider the cyclotomic-Kummer extensions K(ζnt,Gn)/K(ζnt) K\left( {{\zeta _{nt}},\root n \of G } \right)/K\left( {{\zeta _{nt}}} \right) for all positive integers n and t, and we describe an explicit finite procedure to compute at once the degree of all these extensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信