{"title":"多二次或四次循环数域的Kummer理论","authors":"Flavio Perissinotto, Antonella Perucca","doi":"10.2478/udt-2022-0017","DOIUrl":null,"url":null,"abstract":"Abstract Let K be a number field which is multiquadratic or quartic cyclic. We prove several results about the Kummer extensions of K, namely concerning the intersection between the Kummer extensions and the cyclotomic extensions of K. For G a finitely generated subgroup of K×, we consider the cyclotomic-Kummer extensions K(ζnt,Gn)/K(ζnt) K\\left( {{\\zeta _{nt}},\\root n \\of G } \\right)/K\\left( {{\\zeta _{nt}}} \\right) for all positive integers n and t, and we describe an explicit finite procedure to compute at once the degree of all these extensions.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"11 1","pages":"165 - 194"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Kummer Theory for Multiquadratic or Quartic Cyclic Number Fields\",\"authors\":\"Flavio Perissinotto, Antonella Perucca\",\"doi\":\"10.2478/udt-2022-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let K be a number field which is multiquadratic or quartic cyclic. We prove several results about the Kummer extensions of K, namely concerning the intersection between the Kummer extensions and the cyclotomic extensions of K. For G a finitely generated subgroup of K×, we consider the cyclotomic-Kummer extensions K(ζnt,Gn)/K(ζnt) K\\\\left( {{\\\\zeta _{nt}},\\\\root n \\\\of G } \\\\right)/K\\\\left( {{\\\\zeta _{nt}}} \\\\right) for all positive integers n and t, and we describe an explicit finite procedure to compute at once the degree of all these extensions.\",\"PeriodicalId\":23390,\"journal\":{\"name\":\"Uniform distribution theory\",\"volume\":\"11 1\",\"pages\":\"165 - 194\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uniform distribution theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/udt-2022-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2022-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
摘要设K为一个多二次或四次循环的数域。我们证明了关于K的Kummer扩展的几个结果,即关于K的Kummer扩展与K的环裂扩展之间的相交。对于kx的有限生成子群G,我们考虑对于所有正整数n和t, K(ζnt,Gn)/K(ζnt) K \left ({{\zeta _nt{, }}\root n \of G }\right)/K \left ({{\zeta _nt{}}}\right)的环裂-Kummer扩展。并且我们描述了一个显式的有限过程来一次计算所有这些扩展的程度。
Kummer Theory for Multiquadratic or Quartic Cyclic Number Fields
Abstract Let K be a number field which is multiquadratic or quartic cyclic. We prove several results about the Kummer extensions of K, namely concerning the intersection between the Kummer extensions and the cyclotomic extensions of K. For G a finitely generated subgroup of K×, we consider the cyclotomic-Kummer extensions K(ζnt,Gn)/K(ζnt) K\left( {{\zeta _{nt}},\root n \of G } \right)/K\left( {{\zeta _{nt}}} \right) for all positive integers n and t, and we describe an explicit finite procedure to compute at once the degree of all these extensions.