一个采用65nm CMOS的12.3mW 12.5Gb/s完整收发器

Koji Fukuda, H. Yamashita, G. Ono, R. Nemoto, Eiichi Suzuki, T. Takemoto, F. Yuki, T. Saito
{"title":"一个采用65nm CMOS的12.3mW 12.5Gb/s完整收发器","authors":"Koji Fukuda, H. Yamashita, G. Ono, R. Nemoto, Eiichi Suzuki, T. Takemoto, F. Yuki, T. Saito","doi":"10.1109/ISSCC.2010.5433824","DOIUrl":null,"url":null,"abstract":"For the people involved with multi-Gb/s chip-to-chip serial links, reducing power dissipation per Gb/s to less than 1mW/(Gb/s) (i.e., 1pJ/b) has been a long-held goal. Several years ago, the power dissipation of these links was in the range of about 10 to 20mW/(Gb/s). In 2007, Poulton et al. developed a 14mW 6.25Gb/s transceiver with power efficiency of 2.2mW/(Gb/s) [1]. Thereafter, there were some efforts aiming to reduce power of each building block in a transceiver [2, 3]. This paper presents a 12.3mW 12.5Gb/s complete transceiver (including CDR, MUX/DEMUX, and global clock distribution)in 65nm CMOS with power efficiency of 0.98mW/(Gb/s). To achieve low power, a resonant-clock distribution with distributed on-chip inductors and a low-swing voltage-mode driver with pulse-current boosting are used in the transmitter, while a symbol-rate comparator/phase detector using 4-stage sense amplifier and phase-rotating PLL with variable delay are used in the receiver.","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":"24 1","pages":"368-369"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"A 12.3mW 12.5Gb/s complete transceiver in 65nm CMOS\",\"authors\":\"Koji Fukuda, H. Yamashita, G. Ono, R. Nemoto, Eiichi Suzuki, T. Takemoto, F. Yuki, T. Saito\",\"doi\":\"10.1109/ISSCC.2010.5433824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the people involved with multi-Gb/s chip-to-chip serial links, reducing power dissipation per Gb/s to less than 1mW/(Gb/s) (i.e., 1pJ/b) has been a long-held goal. Several years ago, the power dissipation of these links was in the range of about 10 to 20mW/(Gb/s). In 2007, Poulton et al. developed a 14mW 6.25Gb/s transceiver with power efficiency of 2.2mW/(Gb/s) [1]. Thereafter, there were some efforts aiming to reduce power of each building block in a transceiver [2, 3]. This paper presents a 12.3mW 12.5Gb/s complete transceiver (including CDR, MUX/DEMUX, and global clock distribution)in 65nm CMOS with power efficiency of 0.98mW/(Gb/s). To achieve low power, a resonant-clock distribution with distributed on-chip inductors and a low-swing voltage-mode driver with pulse-current boosting are used in the transmitter, while a symbol-rate comparator/phase detector using 4-stage sense amplifier and phase-rotating PLL with variable delay are used in the receiver.\",\"PeriodicalId\":6418,\"journal\":{\"name\":\"2010 IEEE International Solid-State Circuits Conference - (ISSCC)\",\"volume\":\"24 1\",\"pages\":\"368-369\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Solid-State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2010.5433824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2010.5433824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

对于涉及多Gb/s芯片对芯片串行链路的人来说,将每Gb/s的功耗降低到低于1mW/(Gb/s)(即1pJ/b)一直是一个长期的目标。几年前,这些链路的功耗大约在10到20mW/(Gb/s)之间。2007年,Poulton等人开发了14mW 6.25Gb/s的收发器,功率效率为2.2mW/(Gb/s)[1]。此后,有一些努力旨在降低收发器中每个构建模块的功率[2,3]。本文提出了一种功率效率为0.98mW/(Gb/s)的基于65nm CMOS的12.3mW 12.5Gb/s完整收发器(包括CDR、MUX/DEMUX和全局时钟分布)。为了实现低功耗,发射机采用了带有分布式片上电感的谐振时钟分布和带有脉冲电流增强的低摆幅电压模式驱动器,而接收机采用了带有4级感测放大器的符号速率比较器/鉴相器和可变延迟的相位旋转锁相环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 12.3mW 12.5Gb/s complete transceiver in 65nm CMOS
For the people involved with multi-Gb/s chip-to-chip serial links, reducing power dissipation per Gb/s to less than 1mW/(Gb/s) (i.e., 1pJ/b) has been a long-held goal. Several years ago, the power dissipation of these links was in the range of about 10 to 20mW/(Gb/s). In 2007, Poulton et al. developed a 14mW 6.25Gb/s transceiver with power efficiency of 2.2mW/(Gb/s) [1]. Thereafter, there were some efforts aiming to reduce power of each building block in a transceiver [2, 3]. This paper presents a 12.3mW 12.5Gb/s complete transceiver (including CDR, MUX/DEMUX, and global clock distribution)in 65nm CMOS with power efficiency of 0.98mW/(Gb/s). To achieve low power, a resonant-clock distribution with distributed on-chip inductors and a low-swing voltage-mode driver with pulse-current boosting are used in the transmitter, while a symbol-rate comparator/phase detector using 4-stage sense amplifier and phase-rotating PLL with variable delay are used in the receiver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信