发现图函数依赖

W. Fan, Chunming Hu, Xueli Liu, Ping Lu
{"title":"发现图函数依赖","authors":"W. Fan, Chunming Hu, Xueli Liu, Ping Lu","doi":"10.1145/3397198","DOIUrl":null,"url":null,"abstract":"This article studies discovery of Graph Functional Dependencies (GFDs), a class of functional dependencies defined on graphs. We investigate the fixed-parameter tractability of three fundamental problems related to GFD discovery. We show that the implication and satisfiability problems are fixed-parameter tractable, but the validation problem is co-W[1]-hard in general. We introduce notions of reduced GFDs and their topological support, and formalize the discovery problem for GFDs. We develop algorithms for discovering GFDs and computing their covers. Moreover, we show that GFD discovery is feasible over large-scale graphs, by providing parallel scalable algorithms that guarantee to reduce running time when more processors are used. Using real-life and synthetic data, we experimentally verify the effectiveness and scalability of the algorithms.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"143 1","pages":"1 - 42"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Discovering Graph Functional Dependencies\",\"authors\":\"W. Fan, Chunming Hu, Xueli Liu, Ping Lu\",\"doi\":\"10.1145/3397198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article studies discovery of Graph Functional Dependencies (GFDs), a class of functional dependencies defined on graphs. We investigate the fixed-parameter tractability of three fundamental problems related to GFD discovery. We show that the implication and satisfiability problems are fixed-parameter tractable, but the validation problem is co-W[1]-hard in general. We introduce notions of reduced GFDs and their topological support, and formalize the discovery problem for GFDs. We develop algorithms for discovering GFDs and computing their covers. Moreover, we show that GFD discovery is feasible over large-scale graphs, by providing parallel scalable algorithms that guarantee to reduce running time when more processors are used. Using real-life and synthetic data, we experimentally verify the effectiveness and scalability of the algorithms.\",\"PeriodicalId\":6983,\"journal\":{\"name\":\"ACM Transactions on Database Systems (TODS)\",\"volume\":\"143 1\",\"pages\":\"1 - 42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Database Systems (TODS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems (TODS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

图函数依赖(GFDs)是定义在图上的一类函数依赖。我们研究了与GFD发现有关的三个基本问题的固定参数可追溯性。我们证明了隐含性和可满足性问题是固定参数可处理的,但验证问题通常是co-W[1]-难的。我们引入了约简GFDs及其拓扑支持的概念,并形式化了GFDs的发现问题。我们开发了发现gfd和计算其覆盖范围的算法。此外,我们通过提供并行可扩展算法来保证在使用更多处理器时减少运行时间,证明了在大规模图上发现GFD是可行的。利用实际数据和合成数据,实验验证了算法的有效性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovering Graph Functional Dependencies
This article studies discovery of Graph Functional Dependencies (GFDs), a class of functional dependencies defined on graphs. We investigate the fixed-parameter tractability of three fundamental problems related to GFD discovery. We show that the implication and satisfiability problems are fixed-parameter tractable, but the validation problem is co-W[1]-hard in general. We introduce notions of reduced GFDs and their topological support, and formalize the discovery problem for GFDs. We develop algorithms for discovering GFDs and computing their covers. Moreover, we show that GFD discovery is feasible over large-scale graphs, by providing parallel scalable algorithms that guarantee to reduce running time when more processors are used. Using real-life and synthetic data, we experimentally verify the effectiveness and scalability of the algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信