Jian Huang, Anirudh Badam, Moinuddin K. Qureshi, K. Schwan
{"title":"统一地址转换的内存映射ssd与FlashMap","authors":"Jian Huang, Anirudh Badam, Moinuddin K. Qureshi, K. Schwan","doi":"10.1145/2749469.2750420","DOIUrl":null,"url":null,"abstract":"Applications can map data on SSDs into virtual memory to transparently scale beyond DRAM capacity, permitting them to leverage high SSD capacities with few code changes. Obtaining good performance for memory-mapped SSD content, however, is hard because the virtual memory layer, the file system and the flash translation layer (FTL) perform address translations, sanity and permission checks independently from each other. We introduce FlashMap, an SSD interface that is optimized for memory-mapped SSD-files. FlashMap combines all the address translations into page tables that are used to index files and also to store the FTL-level mappings without altering the guarantees of the file system or the FTL. It uses the state in the OS memory manager and the page tables to perform sanity and permission checks respectively. By combining these layers, FlashMap reduces critical-path latency and improves DRAM caching efficiency. We find that this increases performance for applications by up to 3.32x compared to state-of-the-art SSD file-mapping mechanisms. Additionally, latency of SSD accesses reduces by up to 53.2%.","PeriodicalId":6878,"journal":{"name":"2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA)","volume":"33 1","pages":"580-591"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Unified address translation for memory-mapped SSDs with FlashMap\",\"authors\":\"Jian Huang, Anirudh Badam, Moinuddin K. Qureshi, K. Schwan\",\"doi\":\"10.1145/2749469.2750420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applications can map data on SSDs into virtual memory to transparently scale beyond DRAM capacity, permitting them to leverage high SSD capacities with few code changes. Obtaining good performance for memory-mapped SSD content, however, is hard because the virtual memory layer, the file system and the flash translation layer (FTL) perform address translations, sanity and permission checks independently from each other. We introduce FlashMap, an SSD interface that is optimized for memory-mapped SSD-files. FlashMap combines all the address translations into page tables that are used to index files and also to store the FTL-level mappings without altering the guarantees of the file system or the FTL. It uses the state in the OS memory manager and the page tables to perform sanity and permission checks respectively. By combining these layers, FlashMap reduces critical-path latency and improves DRAM caching efficiency. We find that this increases performance for applications by up to 3.32x compared to state-of-the-art SSD file-mapping mechanisms. Additionally, latency of SSD accesses reduces by up to 53.2%.\",\"PeriodicalId\":6878,\"journal\":{\"name\":\"2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA)\",\"volume\":\"33 1\",\"pages\":\"580-591\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2749469.2750420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2749469.2750420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unified address translation for memory-mapped SSDs with FlashMap
Applications can map data on SSDs into virtual memory to transparently scale beyond DRAM capacity, permitting them to leverage high SSD capacities with few code changes. Obtaining good performance for memory-mapped SSD content, however, is hard because the virtual memory layer, the file system and the flash translation layer (FTL) perform address translations, sanity and permission checks independently from each other. We introduce FlashMap, an SSD interface that is optimized for memory-mapped SSD-files. FlashMap combines all the address translations into page tables that are used to index files and also to store the FTL-level mappings without altering the guarantees of the file system or the FTL. It uses the state in the OS memory manager and the page tables to perform sanity and permission checks respectively. By combining these layers, FlashMap reduces critical-path latency and improves DRAM caching efficiency. We find that this increases performance for applications by up to 3.32x compared to state-of-the-art SSD file-mapping mechanisms. Additionally, latency of SSD accesses reduces by up to 53.2%.