{"title":"用代数方法求解三角形","authors":"Joseph Bakhos","doi":"10.12988/ams.2023.917399","DOIUrl":null,"url":null,"abstract":"Quaterns are a new measure of rotation. Since they are defined in terms of rect-angular coordinates, all of the analogue trigonometric functions become algebraic rather than transcendental. Rotations, angle sums and differences, vector sums, cross and dot products, etc., all become algebraic. Triangles can be solved algebraically. Computer algorithms use truncated infinite sums for the transcendental calculations of these quantities. If rotations were expressed in quaterns, these calculations would be simplified by a few orders of magnitude. This would have the potential to greatly reduce computing time. The archaic Greek letter koppa is used to represent rotations in quaterns, rather than the traditional Greek letter theta. Because calculations utilizing quaterns are algebraic, simple rotation in the first two quadrants can be done ”by hand” using ”pen and paper.” Using the approximate methods outlined towards the end of the paper, triangles may be approximately solved with an error of less than 3% using algebra and a few simple formulas.","PeriodicalId":49860,"journal":{"name":"Mathematical Models & Methods in Applied Sciences","volume":"60 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving triangles algebraically\",\"authors\":\"Joseph Bakhos\",\"doi\":\"10.12988/ams.2023.917399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quaterns are a new measure of rotation. Since they are defined in terms of rect-angular coordinates, all of the analogue trigonometric functions become algebraic rather than transcendental. Rotations, angle sums and differences, vector sums, cross and dot products, etc., all become algebraic. Triangles can be solved algebraically. Computer algorithms use truncated infinite sums for the transcendental calculations of these quantities. If rotations were expressed in quaterns, these calculations would be simplified by a few orders of magnitude. This would have the potential to greatly reduce computing time. The archaic Greek letter koppa is used to represent rotations in quaterns, rather than the traditional Greek letter theta. Because calculations utilizing quaterns are algebraic, simple rotation in the first two quadrants can be done ”by hand” using ”pen and paper.” Using the approximate methods outlined towards the end of the paper, triangles may be approximately solved with an error of less than 3% using algebra and a few simple formulas.\",\"PeriodicalId\":49860,\"journal\":{\"name\":\"Mathematical Models & Methods in Applied Sciences\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models & Methods in Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12988/ams.2023.917399\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models & Methods in Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12988/ams.2023.917399","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Quaterns are a new measure of rotation. Since they are defined in terms of rect-angular coordinates, all of the analogue trigonometric functions become algebraic rather than transcendental. Rotations, angle sums and differences, vector sums, cross and dot products, etc., all become algebraic. Triangles can be solved algebraically. Computer algorithms use truncated infinite sums for the transcendental calculations of these quantities. If rotations were expressed in quaterns, these calculations would be simplified by a few orders of magnitude. This would have the potential to greatly reduce computing time. The archaic Greek letter koppa is used to represent rotations in quaterns, rather than the traditional Greek letter theta. Because calculations utilizing quaterns are algebraic, simple rotation in the first two quadrants can be done ”by hand” using ”pen and paper.” Using the approximate methods outlined towards the end of the paper, triangles may be approximately solved with an error of less than 3% using algebra and a few simple formulas.
期刊介绍:
The purpose of this journal is to provide a medium of exchange for scientists engaged in applied sciences (physics, mathematical physics, natural, and technological sciences) where there exists a non-trivial interplay between mathematics, mathematical modelling of real systems and mathematical and computer methods oriented towards the qualitative and quantitative analysis of real physical systems.
The principal areas of interest of this journal are the following:
1.Mathematical modelling of systems in applied sciences;
2.Mathematical methods for the qualitative and quantitative analysis of models of mathematical physics and technological sciences;
3.Numerical and computer treatment of mathematical models or real systems.
Special attention will be paid to the analysis of nonlinearities and stochastic aspects.
Within the above limitation, scientists in all fields which employ mathematics are encouraged to submit research and review papers to the journal. Both theoretical and applied papers will be considered for publication. High quality, novelty of the content and potential for the applications to modern problems in applied sciences and technology will be the guidelines for the selection of papers to be published in the journal. This journal publishes only articles with original and innovative contents.
Book reviews, announcements and tutorial articles will be featured occasionally.