澳门:基于MCMC的高维边信息的可扩展贝叶斯分解

J. Simm, Adam Arany, Pooya Zakeri, Tom Haber, J. Wegner, V. Chupakhin, H. Ceulemans, Y. Moreau
{"title":"澳门:基于MCMC的高维边信息的可扩展贝叶斯分解","authors":"J. Simm, Adam Arany, Pooya Zakeri, Tom Haber, J. Wegner, V. Chupakhin, H. Ceulemans, Y. Moreau","doi":"10.1109/MLSP.2017.8168143","DOIUrl":null,"url":null,"abstract":"Bayesian matrix factorization is a method of choice for making predictions for large-scale incomplete matrices, due to availability of efficient Gibbs sampling schemes and its robustness to overfitting. In this paper, we consider factorization of large scale matrices with high-dimensional side information. However, sampling the link matrix for the side information with standard approaches costs O(F3) time, where F is the dimensionality of the features. To overcome this limitation we, firstly, propose a prior for the link matrix whose strength is proportional to the scale of latent variables. Secondly, using this prior we derive an efficient sampler, with linear complexity in the number of non-zeros, O(Nnz), by leveraging Krylov subspace methods, such as block conjugate gradient, allowing us to handle million-dimensional side information. We demonstrate the effectiveness of our proposed method in drug-protein interaction prediction task.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"11 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Macau: Scalable Bayesian factorization with high-dimensional side information using MCMC\",\"authors\":\"J. Simm, Adam Arany, Pooya Zakeri, Tom Haber, J. Wegner, V. Chupakhin, H. Ceulemans, Y. Moreau\",\"doi\":\"10.1109/MLSP.2017.8168143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian matrix factorization is a method of choice for making predictions for large-scale incomplete matrices, due to availability of efficient Gibbs sampling schemes and its robustness to overfitting. In this paper, we consider factorization of large scale matrices with high-dimensional side information. However, sampling the link matrix for the side information with standard approaches costs O(F3) time, where F is the dimensionality of the features. To overcome this limitation we, firstly, propose a prior for the link matrix whose strength is proportional to the scale of latent variables. Secondly, using this prior we derive an efficient sampler, with linear complexity in the number of non-zeros, O(Nnz), by leveraging Krylov subspace methods, such as block conjugate gradient, allowing us to handle million-dimensional side information. We demonstrate the effectiveness of our proposed method in drug-protein interaction prediction task.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"11 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

贝叶斯矩阵分解是对大规模不完全矩阵进行预测的一种选择方法,由于有效的吉布斯抽样方案的可用性及其对过拟合的鲁棒性。本文研究了具有高维边信息的大型矩阵的分解问题。然而,使用标准方法对边信息的链接矩阵进行采样需要O(F3)时间,其中F是特征的维数。为了克服这一限制,我们首先提出了链接矩阵的先验,其强度与潜在变量的规模成正比。其次,利用该先验,我们通过利用Krylov子空间方法(如块共轭梯度)推导出一个有效的采样器,其非零个数的线性复杂度为O(Nnz),允许我们处理百万维侧信息。我们证明了该方法在药物-蛋白质相互作用预测任务中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Macau: Scalable Bayesian factorization with high-dimensional side information using MCMC
Bayesian matrix factorization is a method of choice for making predictions for large-scale incomplete matrices, due to availability of efficient Gibbs sampling schemes and its robustness to overfitting. In this paper, we consider factorization of large scale matrices with high-dimensional side information. However, sampling the link matrix for the side information with standard approaches costs O(F3) time, where F is the dimensionality of the features. To overcome this limitation we, firstly, propose a prior for the link matrix whose strength is proportional to the scale of latent variables. Secondly, using this prior we derive an efficient sampler, with linear complexity in the number of non-zeros, O(Nnz), by leveraging Krylov subspace methods, such as block conjugate gradient, allowing us to handle million-dimensional side information. We demonstrate the effectiveness of our proposed method in drug-protein interaction prediction task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信