稳定律中基于经验累积函数的参数估计

IF 0.3 Q4 MATHEMATICS
Annika Krutto
{"title":"稳定律中基于经验累积函数的参数估计","authors":"Annika Krutto","doi":"10.12697/ACUTM.2018.22.26","DOIUrl":null,"url":null,"abstract":"Stable distributions are a subclass of infinitely divisible distributions that form the only family of possible limiting distributions for sums of independent identically distributed random variables. A challenging problem is estimating their parameters because many have densities with no explicit form and infinite moments. To address this problem, a class of closed-form estimators, called cumulant estimators, has been introduced. Cumulant estimators are derived from the logarithm of empirical characteristic function at two arbitrary distinct positive real arguments. This paper extends cumulant estimators in two directions: (i) it is proved that they are asymptotically normal and (ii) a sample based rule for selecting the two arguments is proposed. Extensive simulations show that under the provided selection rule, the closed-form cumulant estimators generally outperform the well-known algorithmic methods.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"80 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Empirical cumulant function based parameter estimation in stable laws\",\"authors\":\"Annika Krutto\",\"doi\":\"10.12697/ACUTM.2018.22.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stable distributions are a subclass of infinitely divisible distributions that form the only family of possible limiting distributions for sums of independent identically distributed random variables. A challenging problem is estimating their parameters because many have densities with no explicit form and infinite moments. To address this problem, a class of closed-form estimators, called cumulant estimators, has been introduced. Cumulant estimators are derived from the logarithm of empirical characteristic function at two arbitrary distinct positive real arguments. This paper extends cumulant estimators in two directions: (i) it is proved that they are asymptotically normal and (ii) a sample based rule for selecting the two arguments is proposed. Extensive simulations show that under the provided selection rule, the closed-form cumulant estimators generally outperform the well-known algorithmic methods.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/ACUTM.2018.22.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/ACUTM.2018.22.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

稳定分布是无限可分分布的一个子类,它构成了独立同分布随机变量和的唯一可能的极限分布族。一个具有挑战性的问题是估计它们的参数,因为许多密度没有明确的形式和无限的矩。为了解决这个问题,引入了一类封闭形式的估计量,称为累积估计量。累积估计量是由经验特征函数在任意两个不同的正实参数处的对数导出的。本文从两个方向对累积估计量进行了推广:(1)证明了累积估计量是渐近正态的;(2)给出了一个基于样本的选取累积估计量的规则。大量的仿真结果表明,在所提供的选择规则下,封闭式累积估计器总体上优于已知的算法方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical cumulant function based parameter estimation in stable laws
Stable distributions are a subclass of infinitely divisible distributions that form the only family of possible limiting distributions for sums of independent identically distributed random variables. A challenging problem is estimating their parameters because many have densities with no explicit form and infinite moments. To address this problem, a class of closed-form estimators, called cumulant estimators, has been introduced. Cumulant estimators are derived from the logarithm of empirical characteristic function at two arbitrary distinct positive real arguments. This paper extends cumulant estimators in two directions: (i) it is proved that they are asymptotically normal and (ii) a sample based rule for selecting the two arguments is proposed. Extensive simulations show that under the provided selection rule, the closed-form cumulant estimators generally outperform the well-known algorithmic methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信