具有多稳定性的折纸型张拉整体结构

Richard Rodriguez-Feliciano, Kon-Well Wang
{"title":"具有多稳定性的折纸型张拉整体结构","authors":"Richard Rodriguez-Feliciano, Kon-Well Wang","doi":"10.1117/12.2658027","DOIUrl":null,"url":null,"abstract":"Tensegrity structures have been harnessed in the design of many reconfigurable and deployable systems due to their high strength to weight ratio, stiffness tunability and multistability programmability. In this paper, we present a design methodology of an origami-inspired multistable tensegrity structure that can achieve up to three stable configurations in one unit cell. This class-3 tensegrity structure can achieve equilibrium states at the fully deployed and flat folded states, and the transition between its stable states is controlled with a one directional displacement, a feature not observed in previous tensegrity elements. To design this system the required input are the three heights at which a stable configuration is desired. At each height the total strain energy of the system of strings is evaluated to select the unstretched length and stiffness values of each string that satisfy the conditions of stability. Analytically it was found that achieving a stable configuration at each height is affected by the number of strings that are in tension at this point, and the deformation path, stiffness and unstretched length of each string.","PeriodicalId":89272,"journal":{"name":"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics","volume":"6 1","pages":"1248302 - 1248302-8"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An origami-inspired tensegrity structure with multistability\",\"authors\":\"Richard Rodriguez-Feliciano, Kon-Well Wang\",\"doi\":\"10.1117/12.2658027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tensegrity structures have been harnessed in the design of many reconfigurable and deployable systems due to their high strength to weight ratio, stiffness tunability and multistability programmability. In this paper, we present a design methodology of an origami-inspired multistable tensegrity structure that can achieve up to three stable configurations in one unit cell. This class-3 tensegrity structure can achieve equilibrium states at the fully deployed and flat folded states, and the transition between its stable states is controlled with a one directional displacement, a feature not observed in previous tensegrity elements. To design this system the required input are the three heights at which a stable configuration is desired. At each height the total strain energy of the system of strings is evaluated to select the unstretched length and stiffness values of each string that satisfy the conditions of stability. Analytically it was found that achieving a stable configuration at each height is affected by the number of strings that are in tension at this point, and the deformation path, stiffness and unstretched length of each string.\",\"PeriodicalId\":89272,\"journal\":{\"name\":\"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics\",\"volume\":\"6 1\",\"pages\":\"1248302 - 1248302-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2658027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart structures and materials. Nondestructive evaluation for health monitoring and diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2658027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

张拉整体结构由于其高强度重量比、刚度可调性和多稳定性可编程性,已被应用于许多可重构和可部署系统的设计中。在本文中,我们提出了一种折纸启发的多稳定张拉整体结构的设计方法,该结构可以在一个单元格中实现多达三种稳定配置。这种3级张拉整体结构可以在完全展开和平面折叠状态下实现平衡状态,并且其稳定状态之间的过渡由单向位移控制,这是以前的张拉整体单元所没有观察到的特征。为了设计这个系统,所需要的输入是需要稳定配置的三个高度。在每个高度处,计算弦系统的总应变能,以选择满足稳定条件的每根弦的未拉伸长度和刚度值。分析发现,在每个高度实现稳定的结构受到此时处于张力状态的弦的数量、每根弦的变形路径、刚度和未拉伸长度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An origami-inspired tensegrity structure with multistability
Tensegrity structures have been harnessed in the design of many reconfigurable and deployable systems due to their high strength to weight ratio, stiffness tunability and multistability programmability. In this paper, we present a design methodology of an origami-inspired multistable tensegrity structure that can achieve up to three stable configurations in one unit cell. This class-3 tensegrity structure can achieve equilibrium states at the fully deployed and flat folded states, and the transition between its stable states is controlled with a one directional displacement, a feature not observed in previous tensegrity elements. To design this system the required input are the three heights at which a stable configuration is desired. At each height the total strain energy of the system of strings is evaluated to select the unstretched length and stiffness values of each string that satisfy the conditions of stability. Analytically it was found that achieving a stable configuration at each height is affected by the number of strings that are in tension at this point, and the deformation path, stiffness and unstretched length of each string.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信