Oshini Goonetilleke, T. Sellis, Xiuzhen Zhang, Saket K. Sathe
{"title":"Twitter分析:大数据管理视角","authors":"Oshini Goonetilleke, T. Sellis, Xiuzhen Zhang, Saket K. Sathe","doi":"10.1145/2674026.2674029","DOIUrl":null,"url":null,"abstract":"With the inception of the Twitter microblogging platform in 2006, a myriad of research efforts have emerged studying different aspects of the Twittersphere. Each study exploits its own tools and mechanisms to capture, store, query and analyze Twitter data. Inevitably, platforms have been developed to replace this ad-hoc exploration with a more structured and methodological form of analysis. Another body of literature focuses on developing languages for querying Tweets. This paper addresses issues around the big data nature of Twitter and emphasizes the need for new data management and query language frameworks that address limitations of existing systems. We review existing approaches that were developed to facilitate twitter analytics followed by a discussion on research issues and technical challenges in developing integrated solutions.","PeriodicalId":90050,"journal":{"name":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","volume":"48 1","pages":"11-20"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Twitter analytics: a big data management perspective\",\"authors\":\"Oshini Goonetilleke, T. Sellis, Xiuzhen Zhang, Saket K. Sathe\",\"doi\":\"10.1145/2674026.2674029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the inception of the Twitter microblogging platform in 2006, a myriad of research efforts have emerged studying different aspects of the Twittersphere. Each study exploits its own tools and mechanisms to capture, store, query and analyze Twitter data. Inevitably, platforms have been developed to replace this ad-hoc exploration with a more structured and methodological form of analysis. Another body of literature focuses on developing languages for querying Tweets. This paper addresses issues around the big data nature of Twitter and emphasizes the need for new data management and query language frameworks that address limitations of existing systems. We review existing approaches that were developed to facilitate twitter analytics followed by a discussion on research issues and technical challenges in developing integrated solutions.\",\"PeriodicalId\":90050,\"journal\":{\"name\":\"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining\",\"volume\":\"48 1\",\"pages\":\"11-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2674026.2674029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2674026.2674029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Twitter analytics: a big data management perspective
With the inception of the Twitter microblogging platform in 2006, a myriad of research efforts have emerged studying different aspects of the Twittersphere. Each study exploits its own tools and mechanisms to capture, store, query and analyze Twitter data. Inevitably, platforms have been developed to replace this ad-hoc exploration with a more structured and methodological form of analysis. Another body of literature focuses on developing languages for querying Tweets. This paper addresses issues around the big data nature of Twitter and emphasizes the need for new data management and query language frameworks that address limitations of existing systems. We review existing approaches that were developed to facilitate twitter analytics followed by a discussion on research issues and technical challenges in developing integrated solutions.