S. Chernyshenko, V. Dobishuk, O. Okhrimenko, Federico Alessio, H. Schindler, V. Kyva, V. Pugatch, G. Corti
{"title":"RMS-R3——监测LHCB实验中相互作用区域和背景的系统(欧洲核子研究中心)","authors":"S. Chernyshenko, V. Dobishuk, O. Okhrimenko, Federico Alessio, H. Schindler, V. Kyva, V. Pugatch, G. Corti","doi":"10.15407/jnpae2023.02.148","DOIUrl":null,"url":null,"abstract":"The upgraded Large Hadron Collider beauty (LHCb) detector will provide data taken in Run3 at the instantaneous luminosity of proton-proton collisions increased to 2⋅1033 cm-2s-1 at energies of up to 14 TeV. To ensure the safe operation of the experiment, a new beam and background Radiation Monitoring System (RMS-R3) was built. RMS-R3 is based on metal-foil detector technology developed at the Institute for Nuclear Research, National Academy of Sciences of Ukraine (Kyiv, Ukraine). The system comprises four detector modules with two sensors in each. Their frequency response is proportional to the flux of incident charged particles. The modules are located around the beam pipe at a distance of 2.2 m from the interaction point. The results measured during the Run3 in 2022 testify to the reliable operation of the system. Applying the asymmetry method, high-accuracy data were obtained on the localization of the interactions region and the beam and background contribution.","PeriodicalId":42588,"journal":{"name":"Nuclear Physics and Atomic Energy","volume":"19 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RMS-R3 – the system for monitoring the region of interactions and background at the LHCB experiment (CERN)\",\"authors\":\"S. Chernyshenko, V. Dobishuk, O. Okhrimenko, Federico Alessio, H. Schindler, V. Kyva, V. Pugatch, G. Corti\",\"doi\":\"10.15407/jnpae2023.02.148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The upgraded Large Hadron Collider beauty (LHCb) detector will provide data taken in Run3 at the instantaneous luminosity of proton-proton collisions increased to 2⋅1033 cm-2s-1 at energies of up to 14 TeV. To ensure the safe operation of the experiment, a new beam and background Radiation Monitoring System (RMS-R3) was built. RMS-R3 is based on metal-foil detector technology developed at the Institute for Nuclear Research, National Academy of Sciences of Ukraine (Kyiv, Ukraine). The system comprises four detector modules with two sensors in each. Their frequency response is proportional to the flux of incident charged particles. The modules are located around the beam pipe at a distance of 2.2 m from the interaction point. The results measured during the Run3 in 2022 testify to the reliable operation of the system. Applying the asymmetry method, high-accuracy data were obtained on the localization of the interactions region and the beam and background contribution.\",\"PeriodicalId\":42588,\"journal\":{\"name\":\"Nuclear Physics and Atomic Energy\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics and Atomic Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/jnpae2023.02.148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics and Atomic Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/jnpae2023.02.148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
RMS-R3 – the system for monitoring the region of interactions and background at the LHCB experiment (CERN)
The upgraded Large Hadron Collider beauty (LHCb) detector will provide data taken in Run3 at the instantaneous luminosity of proton-proton collisions increased to 2⋅1033 cm-2s-1 at energies of up to 14 TeV. To ensure the safe operation of the experiment, a new beam and background Radiation Monitoring System (RMS-R3) was built. RMS-R3 is based on metal-foil detector technology developed at the Institute for Nuclear Research, National Academy of Sciences of Ukraine (Kyiv, Ukraine). The system comprises four detector modules with two sensors in each. Their frequency response is proportional to the flux of incident charged particles. The modules are located around the beam pipe at a distance of 2.2 m from the interaction point. The results measured during the Run3 in 2022 testify to the reliable operation of the system. Applying the asymmetry method, high-accuracy data were obtained on the localization of the interactions region and the beam and background contribution.
期刊介绍:
The journal Nuclear Physics and Atomic Energy presents the publications on Nuclear Physics, Atomic Energy, Radiation Physics, Radioecology, Engineering and Methods of Experiment. The journal includes peer-reviewed articles which are completed works containing new results of theoretical and experimental researches and are of interest for the scientists, postgraduate students, engineers and for the senior students.