超声空化技术制备晶粒细化ZA-27合金和ZA-27/Al2O3纳米复合材料的力学和腐蚀特性

M. Hayajneh, M. Almomani, A. AL-Akailah
{"title":"超声空化技术制备晶粒细化ZA-27合金和ZA-27/Al2O3纳米复合材料的力学和腐蚀特性","authors":"M. Hayajneh, M. Almomani, A. AL-Akailah","doi":"10.4149/km_2021_3_195","DOIUrl":null,"url":null,"abstract":"In this study, the physical, mechanical, and chemical characteristics of grain refined zinc-aluminum alloy (ZA-27) and ZA-27 based nano-composite reinforced with 1wt.%Al2O3 nanoparticles have been investigated. Ultrasonic cavitation technique was used to fabricate these materials, and they were examined using optical microscopy, micro-Vickers hardness tester, and potentiodynamic polarization. Scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX) was used to investigate surface morphology and chemical elements of the specimens before and after corrosion testing to explain corrosion behaviors. ZA-27 alloy with fine equiaxed grains and 22 % porosity content with respect to the as-cast alloy was fabricated, resulting in a higher microhardness number. Potentiodynamic polarization test results revealed that it has better resistance for localized corrosion; the rapid dissolution of the zinc-rich phase presented in the interspacing region produces a salt layer quickly; this layer effectively protects the underlying metal surface from pits formation. The fabricated nano-composite has a porosity content of 54.2 % of the as-cast porosity content, and a smaller dendritic structure was formed with a uniform dispersion of the Al2O3 nanoparticles within the ZA-27 alloy matrix. Therefore, its microhardness number is greater than that of the as-cast alloy. The potentiodynamic polarization test analyses revealed that its uniform and localized corrosion resistance was improved. Micro-galvanic cells were formed between the primary and secondary phases in the small dendritic structure of the nano-composite, which improves its corrosion resistance. K e y w o r d s: nanoparticles, aluminum dioxide, corrosion resistance, ZA-27 alloy, ultrasonic cavitation, grain refinement","PeriodicalId":18519,"journal":{"name":"Metallic Materials","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical and corrosion characteristics of grain refined ZA-27 alloy and ZA-27/Al2O3 nano-composite produced by ultrasonic cavitation technique\",\"authors\":\"M. Hayajneh, M. Almomani, A. AL-Akailah\",\"doi\":\"10.4149/km_2021_3_195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the physical, mechanical, and chemical characteristics of grain refined zinc-aluminum alloy (ZA-27) and ZA-27 based nano-composite reinforced with 1wt.%Al2O3 nanoparticles have been investigated. Ultrasonic cavitation technique was used to fabricate these materials, and they were examined using optical microscopy, micro-Vickers hardness tester, and potentiodynamic polarization. Scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX) was used to investigate surface morphology and chemical elements of the specimens before and after corrosion testing to explain corrosion behaviors. ZA-27 alloy with fine equiaxed grains and 22 % porosity content with respect to the as-cast alloy was fabricated, resulting in a higher microhardness number. Potentiodynamic polarization test results revealed that it has better resistance for localized corrosion; the rapid dissolution of the zinc-rich phase presented in the interspacing region produces a salt layer quickly; this layer effectively protects the underlying metal surface from pits formation. The fabricated nano-composite has a porosity content of 54.2 % of the as-cast porosity content, and a smaller dendritic structure was formed with a uniform dispersion of the Al2O3 nanoparticles within the ZA-27 alloy matrix. Therefore, its microhardness number is greater than that of the as-cast alloy. The potentiodynamic polarization test analyses revealed that its uniform and localized corrosion resistance was improved. Micro-galvanic cells were formed between the primary and secondary phases in the small dendritic structure of the nano-composite, which improves its corrosion resistance. K e y w o r d s: nanoparticles, aluminum dioxide, corrosion resistance, ZA-27 alloy, ultrasonic cavitation, grain refinement\",\"PeriodicalId\":18519,\"journal\":{\"name\":\"Metallic Materials\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4149/km_2021_3_195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4149/km_2021_3_195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了晶粒细化锌铝合金(ZA-27)和1wt增强的ZA-27基纳米复合材料的物理、力学和化学特性。研究了%Al2O3纳米颗粒。采用超声空化技术制备了这些材料,并用光学显微镜、显微维氏硬度计和动电位极化仪对其进行了检测。利用扫描电子显微镜(SEM)和能量色散x射线能谱仪(EDX)对腐蚀试验前后试样的表面形貌和化学元素进行了研究,以解释腐蚀行为。制备的ZA-27合金具有细小的等轴晶,孔隙率为铸态合金的22%,显微硬度值较高。动电位极化试验结果表明,该材料具有较好的耐局部腐蚀性能;富锌相在间隔区快速溶解,迅速形成盐层;这一层有效地保护下垫金属表面不形成凹坑。制备的纳米复合材料孔隙率为铸态孔隙率的54.2%,Al2O3纳米颗粒均匀分布在ZA-27合金基体内,形成了更小的枝晶结构。因此,其显微硬度值大于铸态合金。动电位极化试验分析表明,其均匀耐蚀性和局部耐蚀性得到了改善。在纳米复合材料的小枝晶结构中,初级相和次级相之间形成了微原电池,提高了其耐腐蚀性。纳米颗粒、二氧化铝、耐腐蚀、ZA-27合金、超声空化、晶粒细化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical and corrosion characteristics of grain refined ZA-27 alloy and ZA-27/Al2O3 nano-composite produced by ultrasonic cavitation technique
In this study, the physical, mechanical, and chemical characteristics of grain refined zinc-aluminum alloy (ZA-27) and ZA-27 based nano-composite reinforced with 1wt.%Al2O3 nanoparticles have been investigated. Ultrasonic cavitation technique was used to fabricate these materials, and they were examined using optical microscopy, micro-Vickers hardness tester, and potentiodynamic polarization. Scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX) was used to investigate surface morphology and chemical elements of the specimens before and after corrosion testing to explain corrosion behaviors. ZA-27 alloy with fine equiaxed grains and 22 % porosity content with respect to the as-cast alloy was fabricated, resulting in a higher microhardness number. Potentiodynamic polarization test results revealed that it has better resistance for localized corrosion; the rapid dissolution of the zinc-rich phase presented in the interspacing region produces a salt layer quickly; this layer effectively protects the underlying metal surface from pits formation. The fabricated nano-composite has a porosity content of 54.2 % of the as-cast porosity content, and a smaller dendritic structure was formed with a uniform dispersion of the Al2O3 nanoparticles within the ZA-27 alloy matrix. Therefore, its microhardness number is greater than that of the as-cast alloy. The potentiodynamic polarization test analyses revealed that its uniform and localized corrosion resistance was improved. Micro-galvanic cells were formed between the primary and secondary phases in the small dendritic structure of the nano-composite, which improves its corrosion resistance. K e y w o r d s: nanoparticles, aluminum dioxide, corrosion resistance, ZA-27 alloy, ultrasonic cavitation, grain refinement
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信