{"title":"用光谱、电化学和分子对接方法研究环丙沙星和司帕沙星与生物分子的相互作用","authors":"N. Rajendiran, M. Suresh","doi":"10.18052/WWW.SCIPRESS.COM/ILCPA.78.1","DOIUrl":null,"url":null,"abstract":"Interactions of ciprofloxacin and sparfloxacin with different biomolecules (DNA, RNA and BSA) are investigated by UV–Visible spectroscopy, fluorescence spectroscopy, cyclic voltammetry and molecular docking methods. Upon increasing the concentration of the biomolecules, the absorption maxima of ciprofloxacin and sparfloxacin are red shifted in the aqueous solutions whereas red or blue shift noticed in the fluorescence spectra. The negative free energy changes suggest that the interaction processes are spontaneous. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential increased. Molecular docking results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the interaction drugs with biomolecules. The molecular docking calculation clarifies the binding mode and the binding sites are in good accordance with the experiment results.","PeriodicalId":14453,"journal":{"name":"International Letters of Chemistry, Physics and Astronomy","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Study of the Interaction of Ciprofloxacin and Sparfloxacin with Biomolecules by Spectral, Electrochemical and Molecular Docking Methods\",\"authors\":\"N. Rajendiran, M. Suresh\",\"doi\":\"10.18052/WWW.SCIPRESS.COM/ILCPA.78.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interactions of ciprofloxacin and sparfloxacin with different biomolecules (DNA, RNA and BSA) are investigated by UV–Visible spectroscopy, fluorescence spectroscopy, cyclic voltammetry and molecular docking methods. Upon increasing the concentration of the biomolecules, the absorption maxima of ciprofloxacin and sparfloxacin are red shifted in the aqueous solutions whereas red or blue shift noticed in the fluorescence spectra. The negative free energy changes suggest that the interaction processes are spontaneous. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential increased. Molecular docking results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the interaction drugs with biomolecules. The molecular docking calculation clarifies the binding mode and the binding sites are in good accordance with the experiment results.\",\"PeriodicalId\":14453,\"journal\":{\"name\":\"International Letters of Chemistry, Physics and Astronomy\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Letters of Chemistry, Physics and Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/WWW.SCIPRESS.COM/ILCPA.78.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Letters of Chemistry, Physics and Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/ILCPA.78.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of the Interaction of Ciprofloxacin and Sparfloxacin with Biomolecules by Spectral, Electrochemical and Molecular Docking Methods
Interactions of ciprofloxacin and sparfloxacin with different biomolecules (DNA, RNA and BSA) are investigated by UV–Visible spectroscopy, fluorescence spectroscopy, cyclic voltammetry and molecular docking methods. Upon increasing the concentration of the biomolecules, the absorption maxima of ciprofloxacin and sparfloxacin are red shifted in the aqueous solutions whereas red or blue shift noticed in the fluorescence spectra. The negative free energy changes suggest that the interaction processes are spontaneous. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential increased. Molecular docking results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the interaction drugs with biomolecules. The molecular docking calculation clarifies the binding mode and the binding sites are in good accordance with the experiment results.