拟几何粗糙路径及变量公式的粗糙变换

IF 1.5 Q2 PHYSICS, MATHEMATICAL
C. Bellingeri
{"title":"拟几何粗糙路径及变量公式的粗糙变换","authors":"C. Bellingeri","doi":"10.1214/22-aihp1297","DOIUrl":null,"url":null,"abstract":"Using some basic notions from the theory of Hopf algebras and quasi-shuffle algebras, we introduce rigorously a new family of rough paths: the quasi-geometric rough paths. We discuss their main properties. In particular, we will relate them with iterated Brownian integrals and the concept of \"simple bracket extension\", developed in the PhD thesis of David Kelly. As a consequence of these results, we have a sufficient criterion to show for any $\\gamma\\in (0,1)$ and any sufficiently smooth function $\\varphi \\colon \\mathbb{R}^d\\to \\mathbb{R}$ a rough change of variable formula on any $\\gamma$-Holder continuous path $x\\colon [0, T]\\to \\mathbb{R}^d$, i.e. an explicit expression of $\\varphi(x_t)$ in terms of rough integrals.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Quasi-geometric rough paths and rough change of variable formula\",\"authors\":\"C. Bellingeri\",\"doi\":\"10.1214/22-aihp1297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using some basic notions from the theory of Hopf algebras and quasi-shuffle algebras, we introduce rigorously a new family of rough paths: the quasi-geometric rough paths. We discuss their main properties. In particular, we will relate them with iterated Brownian integrals and the concept of \\\"simple bracket extension\\\", developed in the PhD thesis of David Kelly. As a consequence of these results, we have a sufficient criterion to show for any $\\\\gamma\\\\in (0,1)$ and any sufficiently smooth function $\\\\varphi \\\\colon \\\\mathbb{R}^d\\\\to \\\\mathbb{R}$ a rough change of variable formula on any $\\\\gamma$-Holder continuous path $x\\\\colon [0, T]\\\\to \\\\mathbb{R}^d$, i.e. an explicit expression of $\\\\varphi(x_t)$ in terms of rough integrals.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aihp1297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aihp1297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 5

摘要

利用Hopf代数和拟shuffle代数的一些基本概念,严格地引入了一类新的粗糙路径:拟几何粗糙路径。我们讨论它们的主要性质。特别是,我们将把它们与迭代布朗积分和David Kelly博士论文中提出的“简单括号扩展”概念联系起来。作为这些结果的结果,我们有一个足够的判据来证明对于任何$\gamma\in (0,1)$和任何足够光滑的函数$\varphi \colon \mathbb{R}^d\to \mathbb{R}$,在任何$\gamma$ -Holder连续路径$x\colon [0, T]\to \mathbb{R}^d$上的变量的粗略变化公式,即$\varphi(x_t)$的粗糙积分的显式表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-geometric rough paths and rough change of variable formula
Using some basic notions from the theory of Hopf algebras and quasi-shuffle algebras, we introduce rigorously a new family of rough paths: the quasi-geometric rough paths. We discuss their main properties. In particular, we will relate them with iterated Brownian integrals and the concept of "simple bracket extension", developed in the PhD thesis of David Kelly. As a consequence of these results, we have a sufficient criterion to show for any $\gamma\in (0,1)$ and any sufficiently smooth function $\varphi \colon \mathbb{R}^d\to \mathbb{R}$ a rough change of variable formula on any $\gamma$-Holder continuous path $x\colon [0, T]\to \mathbb{R}^d$, i.e. an explicit expression of $\varphi(x_t)$ in terms of rough integrals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信