乘法p进近似值

IF 0.8 3区 数学 Q2 MATHEMATICS
D. Badziahin, Y. Bugeaud
{"title":"乘法p进近似值","authors":"D. Badziahin, Y. Bugeaud","doi":"10.1307/mmj/20195785","DOIUrl":null,"url":null,"abstract":"Let p be a prime number. We give several results towards a particular instance of a conjecture of Einsiedler and Kleinbock asserting that every p-adic number x satisfies inf a,b∈Z∖{0}|ab|⋅|ax−b|p=0. We highlight a close relationship between this conjecture and the (still open) p-adic Littlewood conjecture, according to which every real number ξ satisfies inf q∈Z,q⩾1q⋅‖qξ‖⋅|q|p=0. Furthermore, we discuss the analogues of these conjectures over fields of power series.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":"8 1","pages":"1-23"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multiplicative p -Adic Approximation\",\"authors\":\"D. Badziahin, Y. Bugeaud\",\"doi\":\"10.1307/mmj/20195785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let p be a prime number. We give several results towards a particular instance of a conjecture of Einsiedler and Kleinbock asserting that every p-adic number x satisfies inf a,b∈Z∖{0}|ab|⋅|ax−b|p=0. We highlight a close relationship between this conjecture and the (still open) p-adic Littlewood conjecture, according to which every real number ξ satisfies inf q∈Z,q⩾1q⋅‖qξ‖⋅|q|p=0. Furthermore, we discuss the analogues of these conjectures over fields of power series.\",\"PeriodicalId\":49820,\"journal\":{\"name\":\"Michigan Mathematical Journal\",\"volume\":\"8 1\",\"pages\":\"1-23\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Michigan Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20195785\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20195785","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

设p是质数。我们给出了关于einsedler和Kleinbock猜想的一个特殊实例的几个结果,该猜想断言每个p进数x都满足inf,b∈Z∈{0}|ab|⋅|ax−b|p=0。我们强调这个猜想和(仍然开放的)p进Littlewood猜想之间的密切关系,根据这个猜想,每个实数ξ满足inf∈Z,q≠1q⋅‖qξ‖⋅|q|p=0。进一步,我们讨论了这些猜想在幂级数域上的类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplicative p -Adic Approximation
Let p be a prime number. We give several results towards a particular instance of a conjecture of Einsiedler and Kleinbock asserting that every p-adic number x satisfies inf a,b∈Z∖{0}|ab|⋅|ax−b|p=0. We highlight a close relationship between this conjecture and the (still open) p-adic Littlewood conjecture, according to which every real number ξ satisfies inf q∈Z,q⩾1q⋅‖qξ‖⋅|q|p=0. Furthermore, we discuss the analogues of these conjectures over fields of power series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
50
审稿时长
>12 weeks
期刊介绍: The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信