Mg‐4.83Gd‐2.36Nd‐0.21Zr合金热变形行为的本构建模和加工图

Chunhui Wang, Guangyu Yang, S. Ouyang, He Qin, Zhiyong Kan, Wanqi Jie
{"title":"Mg‐4.83Gd‐2.36Nd‐0.21Zr合金热变形行为的本构建模和加工图","authors":"Chunhui Wang, Guangyu Yang, S. Ouyang, He Qin, Zhiyong Kan, Wanqi Jie","doi":"10.1002/pssa.202300434","DOIUrl":null,"url":null,"abstract":"Accurately assessing the hot workability and flow behavior are crucial in the preparation of high‐performance wrought Mg‐RE alloys. The hot deformation behaviors and workability of Mg‐4.83Gd‐2.36Nd‐0.21Zr alloy were examined via Gleeble 3500 thermo‐simulation tests across a range of deformation temperatures from 350 °C to 450 °C and strain rates ranging from 0.001 s‐1 to 1 s‐1. The experimental results revealed that the flow stress of the experimental alloy decreased as the temperature increased and the strain rate decreased. The activation energies for deformation (Q) of the experiment alloy were calculated by the hyperbolic constitutive equation and ranged from 186.78 to 234.97 kJ mol‐1. Strain compensation was incorporated into the constitutive modeling, resulting in the correlation coefficient (R) of 0.9865 and the average absolute relative error (AARE) of 5.4639%. Further, the processing maps were constructed at different strains based on dynamic material models, from which the feasible processing window of the experimental alloy was determined in the areas of deformation temperatures of 425‐450 °C and strain rates of 0.01‐0.1 s‐1.This article is protected by copyright. All rights reserved.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constitutive modeling of hot deformation behaviors and processing maps of Mg‐4.83Gd‐2.36Nd‐0.21Zr alloy\",\"authors\":\"Chunhui Wang, Guangyu Yang, S. Ouyang, He Qin, Zhiyong Kan, Wanqi Jie\",\"doi\":\"10.1002/pssa.202300434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately assessing the hot workability and flow behavior are crucial in the preparation of high‐performance wrought Mg‐RE alloys. The hot deformation behaviors and workability of Mg‐4.83Gd‐2.36Nd‐0.21Zr alloy were examined via Gleeble 3500 thermo‐simulation tests across a range of deformation temperatures from 350 °C to 450 °C and strain rates ranging from 0.001 s‐1 to 1 s‐1. The experimental results revealed that the flow stress of the experimental alloy decreased as the temperature increased and the strain rate decreased. The activation energies for deformation (Q) of the experiment alloy were calculated by the hyperbolic constitutive equation and ranged from 186.78 to 234.97 kJ mol‐1. Strain compensation was incorporated into the constitutive modeling, resulting in the correlation coefficient (R) of 0.9865 and the average absolute relative error (AARE) of 5.4639%. Further, the processing maps were constructed at different strains based on dynamic material models, from which the feasible processing window of the experimental alloy was determined in the areas of deformation temperatures of 425‐450 °C and strain rates of 0.01‐0.1 s‐1.This article is protected by copyright. All rights reserved.\",\"PeriodicalId\":87717,\"journal\":{\"name\":\"Physica status solidi (A): Applied research\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica status solidi (A): Applied research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202300434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica status solidi (A): Applied research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssa.202300434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确评估镁合金的热加工性和流动行为是制备高性能变形镁合金的关键。通过Gleeble 3500热模拟试验,研究了Mg‐4.83Gd‐2.36Nd‐0.21Zr合金在变形温度为350℃~ 450℃、应变速率为0.001 ~ 1 s‐1范围内的热变形行为和可加工性。实验结果表明,随着温度的升高和应变速率的降低,实验合金的流变应力减小。根据双曲本构方程计算了实验合金的变形活化能Q,其范围为186.78 ~ 234.97 kJ mol‐1。将应变补偿纳入本构模型,相关系数(R)为0.9865,平均绝对相对误差(AARE)为5.4639%。此外,基于动态材料模型构建了不同应变下的加工图,确定了实验合金在变形温度425 ~ 450°C、应变速率0.01 ~ 0.1 s‐1范围内的可行加工窗口。这篇文章受版权保护。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constitutive modeling of hot deformation behaviors and processing maps of Mg‐4.83Gd‐2.36Nd‐0.21Zr alloy
Accurately assessing the hot workability and flow behavior are crucial in the preparation of high‐performance wrought Mg‐RE alloys. The hot deformation behaviors and workability of Mg‐4.83Gd‐2.36Nd‐0.21Zr alloy were examined via Gleeble 3500 thermo‐simulation tests across a range of deformation temperatures from 350 °C to 450 °C and strain rates ranging from 0.001 s‐1 to 1 s‐1. The experimental results revealed that the flow stress of the experimental alloy decreased as the temperature increased and the strain rate decreased. The activation energies for deformation (Q) of the experiment alloy were calculated by the hyperbolic constitutive equation and ranged from 186.78 to 234.97 kJ mol‐1. Strain compensation was incorporated into the constitutive modeling, resulting in the correlation coefficient (R) of 0.9865 and the average absolute relative error (AARE) of 5.4639%. Further, the processing maps were constructed at different strains based on dynamic material models, from which the feasible processing window of the experimental alloy was determined in the areas of deformation temperatures of 425‐450 °C and strain rates of 0.01‐0.1 s‐1.This article is protected by copyright. All rights reserved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信