超过泥浆比重的井筒稳定性

Khaqan Khan, M. Altwaijri, Sajjad Ahmed
{"title":"超过泥浆比重的井筒稳定性","authors":"Khaqan Khan, M. Altwaijri, Sajjad Ahmed","doi":"10.2118/204860-ms","DOIUrl":null,"url":null,"abstract":"\n Drilling oil and gas wells with stable and good quality wellbores is essential to minimize drilling difficulties, acquire reliable openhole logs data, run completions and ensure well integrity during stimulation. Stress-induced compressive rock failure leading to enlarged wellbore is a common form of wellbore instability especially in tectonic stress regime. For a particular well trajectory, wellbore stability is generally considered a result of an interplay between drilling mud density (i.e., mud weight) and subsurface geomechanical parameters including in-situ earth stresses, formation pore pressure and rock strength properties. While role of mud system and chemistry can also be important for water sensitive formations, mud weight is always a fundamental component of wellbore stability analysis. Hence, when a wellbore is unstable (over-gauge), it is believed that effective mud support was insufficient to counter stress concentration around wellbore wall. Therefore, increasing mud weight based on model validation and calibration using offset wells data is a common approach to keep wellbore stable.\n However, a limited number of research articles show that wellbore stability is a more complex phenomenon affected not only by geomechanics but also strongly influenced by downhole forces exerted by drillstring vibrations and high mud flow rates. Authors of this paper also observed that some wells drilled with higher mud weight exhibit more unstable wellbore in comparison with offset wells which contradicts the conventional approach of linking wellbore stability to stresses and rock strength properties alone. Therefore, the objective of this paper is to analyze wellbore stability considering both geomechanical and drilling parameters to explain observed anomalous wellbore enlargements in two vertical wells drilled in the same field and reservoir.\n The analysis showed that the well drilled with 18% higher mud weight compared with its offset well and yet showing more unstable wellbore was, in fact, drilled with more aggressive drilling parameters. The aggressive drilling parameters induce additional mechanical disturbance to the wellbore wall causing more severe wellbore enlargements. We devised a new approach of wellbore stability management using two-pronged strategy. It focuses on designing an optimum weight design using geomechanics to address stress-induced wellbore failure together with specifying safe limits of drilling parameters to minimize wellbore damage due to excessive downhole drillstring vibrations. The findings helped achieve more stable wellbore in subsequent wells with hole condition meeting logging and completion requirements as well as avoiding drilling problems.","PeriodicalId":11094,"journal":{"name":"Day 2 Mon, November 29, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wellbore Stability Beyond Mud Weight\",\"authors\":\"Khaqan Khan, M. Altwaijri, Sajjad Ahmed\",\"doi\":\"10.2118/204860-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Drilling oil and gas wells with stable and good quality wellbores is essential to minimize drilling difficulties, acquire reliable openhole logs data, run completions and ensure well integrity during stimulation. Stress-induced compressive rock failure leading to enlarged wellbore is a common form of wellbore instability especially in tectonic stress regime. For a particular well trajectory, wellbore stability is generally considered a result of an interplay between drilling mud density (i.e., mud weight) and subsurface geomechanical parameters including in-situ earth stresses, formation pore pressure and rock strength properties. While role of mud system and chemistry can also be important for water sensitive formations, mud weight is always a fundamental component of wellbore stability analysis. Hence, when a wellbore is unstable (over-gauge), it is believed that effective mud support was insufficient to counter stress concentration around wellbore wall. Therefore, increasing mud weight based on model validation and calibration using offset wells data is a common approach to keep wellbore stable.\\n However, a limited number of research articles show that wellbore stability is a more complex phenomenon affected not only by geomechanics but also strongly influenced by downhole forces exerted by drillstring vibrations and high mud flow rates. Authors of this paper also observed that some wells drilled with higher mud weight exhibit more unstable wellbore in comparison with offset wells which contradicts the conventional approach of linking wellbore stability to stresses and rock strength properties alone. Therefore, the objective of this paper is to analyze wellbore stability considering both geomechanical and drilling parameters to explain observed anomalous wellbore enlargements in two vertical wells drilled in the same field and reservoir.\\n The analysis showed that the well drilled with 18% higher mud weight compared with its offset well and yet showing more unstable wellbore was, in fact, drilled with more aggressive drilling parameters. The aggressive drilling parameters induce additional mechanical disturbance to the wellbore wall causing more severe wellbore enlargements. We devised a new approach of wellbore stability management using two-pronged strategy. It focuses on designing an optimum weight design using geomechanics to address stress-induced wellbore failure together with specifying safe limits of drilling parameters to minimize wellbore damage due to excessive downhole drillstring vibrations. The findings helped achieve more stable wellbore in subsequent wells with hole condition meeting logging and completion requirements as well as avoiding drilling problems.\",\"PeriodicalId\":11094,\"journal\":{\"name\":\"Day 2 Mon, November 29, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Mon, November 29, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204860-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Mon, November 29, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204860-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了最大限度地减少钻井难度、获得可靠的裸眼测井数据、下完井以及在增产过程中确保井的完整性,钻井质量稳定、质量良好的油气井至关重要。应力引起的岩石压缩破坏导致井筒扩大是一种常见的井筒失稳形式,特别是在构造应力条件下。对于特定的井眼轨迹,井筒稳定性通常被认为是钻井泥浆密度(即泥浆重量)与地下地质力学参数(包括地应力、地层孔隙压力和岩石强度特性)相互作用的结果。虽然泥浆体系和化学成分的作用对水敏地层也很重要,但泥浆比重一直是井眼稳定性分析的基本组成部分。因此,当井筒不稳定(超径)时,人们认为有效的泥浆支撑不足以抵消井筒周围的应力集中。因此,根据邻井数据进行模型验证和校准,增加泥浆比重是保持井筒稳定的常用方法。然而,有限的研究文章表明,井筒稳定性是一种更为复杂的现象,不仅受地质力学的影响,还受到钻柱振动和高泥浆流速所产生的井下力的强烈影响。作者还观察到,与邻井相比,一些泥浆比重较高的井表现出更不稳定的井筒,这与将井筒稳定性与应力和岩石强度特性单独联系起来的传统方法相矛盾。因此,本文的目的是分析考虑地质力学和钻井参数的井筒稳定性,以解释在同一油田和油藏中钻探的两口直井中观察到的异常井筒扩大。分析表明,与邻井相比,该井的泥浆比重增加了18%,但井筒更不稳定,实际上,该井采用了更激进的钻井参数。激进的钻井参数会对井壁产生额外的机械扰动,导致更严重的井筒扩大。我们设计了一种新的井筒稳定性管理方法,采用双管齐下的策略。它的重点是利用地质力学设计最佳重量设计,以解决应力引起的井眼破坏问题,同时指定钻井参数的安全限制,以最大限度地减少井下钻柱过度振动造成的井眼损害。这些发现有助于在随后的井中实现更稳定的井筒,井况满足测井和完井要求,并避免了钻井问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wellbore Stability Beyond Mud Weight
Drilling oil and gas wells with stable and good quality wellbores is essential to minimize drilling difficulties, acquire reliable openhole logs data, run completions and ensure well integrity during stimulation. Stress-induced compressive rock failure leading to enlarged wellbore is a common form of wellbore instability especially in tectonic stress regime. For a particular well trajectory, wellbore stability is generally considered a result of an interplay between drilling mud density (i.e., mud weight) and subsurface geomechanical parameters including in-situ earth stresses, formation pore pressure and rock strength properties. While role of mud system and chemistry can also be important for water sensitive formations, mud weight is always a fundamental component of wellbore stability analysis. Hence, when a wellbore is unstable (over-gauge), it is believed that effective mud support was insufficient to counter stress concentration around wellbore wall. Therefore, increasing mud weight based on model validation and calibration using offset wells data is a common approach to keep wellbore stable. However, a limited number of research articles show that wellbore stability is a more complex phenomenon affected not only by geomechanics but also strongly influenced by downhole forces exerted by drillstring vibrations and high mud flow rates. Authors of this paper also observed that some wells drilled with higher mud weight exhibit more unstable wellbore in comparison with offset wells which contradicts the conventional approach of linking wellbore stability to stresses and rock strength properties alone. Therefore, the objective of this paper is to analyze wellbore stability considering both geomechanical and drilling parameters to explain observed anomalous wellbore enlargements in two vertical wells drilled in the same field and reservoir. The analysis showed that the well drilled with 18% higher mud weight compared with its offset well and yet showing more unstable wellbore was, in fact, drilled with more aggressive drilling parameters. The aggressive drilling parameters induce additional mechanical disturbance to the wellbore wall causing more severe wellbore enlargements. We devised a new approach of wellbore stability management using two-pronged strategy. It focuses on designing an optimum weight design using geomechanics to address stress-induced wellbore failure together with specifying safe limits of drilling parameters to minimize wellbore damage due to excessive downhole drillstring vibrations. The findings helped achieve more stable wellbore in subsequent wells with hole condition meeting logging and completion requirements as well as avoiding drilling problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信