esscher -变换拉普拉斯分布下上层建筑过程能力指标的自举下限

Q3 Mathematics
Sebastian George, Ajitha Sasi
{"title":"esscher -变换拉普拉斯分布下上层建筑过程能力指标的自举下限","authors":"Sebastian George, Ajitha Sasi","doi":"10.1515/eqc-2017-0010","DOIUrl":null,"url":null,"abstract":"Abstract This article is a comparative study between the parametric asymptotic lower confidence limits and bootstrap lower confidence limits for the basic quantile based process capability indices based on the unified super-structure C N p ⁢ ( u , v ) {C_{N_{p}}(u,v)} when the distribution of the quality characteristic follows an asymmetric non-normal distribution. We illustrate this method when the distribution of the quality characteristic is a member of the family of Esscher-transformed Laplace models introduced by S. George and D. George [11]. We obtain the bias corrected and accelerated (BCa) bootstrap confidence intervals of C N p ⁢ ( u , v ) {C_{N_{p}}(u,v)} , which provide lower confidence intervals with coverage probability nearer to the nominal value compared to the asymptotic confidence intervals. We conclude that for asymmetric and peaked processes, the BCa confidence interval is a better alternative compared to the usual confidence intervals under the assumption that the quality characteristic follows a Gaussian type distribution. Numerical examples are given based on some real data.","PeriodicalId":37499,"journal":{"name":"Stochastics and Quality Control","volume":"71 1","pages":"87 - 98"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bootstrap Lower Confidence Limits of Superstructure Process Capability Indices for Esscher-Transformed Laplace Distribution\",\"authors\":\"Sebastian George, Ajitha Sasi\",\"doi\":\"10.1515/eqc-2017-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article is a comparative study between the parametric asymptotic lower confidence limits and bootstrap lower confidence limits for the basic quantile based process capability indices based on the unified super-structure C N p ⁢ ( u , v ) {C_{N_{p}}(u,v)} when the distribution of the quality characteristic follows an asymmetric non-normal distribution. We illustrate this method when the distribution of the quality characteristic is a member of the family of Esscher-transformed Laplace models introduced by S. George and D. George [11]. We obtain the bias corrected and accelerated (BCa) bootstrap confidence intervals of C N p ⁢ ( u , v ) {C_{N_{p}}(u,v)} , which provide lower confidence intervals with coverage probability nearer to the nominal value compared to the asymptotic confidence intervals. We conclude that for asymmetric and peaked processes, the BCa confidence interval is a better alternative compared to the usual confidence intervals under the assumption that the quality characteristic follows a Gaussian type distribution. Numerical examples are given based on some real data.\",\"PeriodicalId\":37499,\"journal\":{\"name\":\"Stochastics and Quality Control\",\"volume\":\"71 1\",\"pages\":\"87 - 98\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Quality Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eqc-2017-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Quality Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eqc-2017-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文比较研究了基于统一超结构C N p _ (u,v) {C_{N_{p}}(u,v)}的质量特性服从非对称非正态分布时,基于基本分位数的过程能力指标的参数渐近置信下限与自举置信下限。当质量特征的分布是S. George和D. George[11]引入的esscher变换拉普拉斯模型族的成员时,我们说明了这种方法。我们得到了C N p _ (u,v) {C_{N_{p}}(u,v)}的偏差校正和加速(BCa)自助置信区间,与渐近置信区间相比,它提供了更低的置信区间,覆盖概率更接近标称值。我们得出结论,对于非对称和峰值过程,在质量特征遵循高斯型分布的假设下,与通常的置信区间相比,BCa置信区间是更好的选择。根据实际数据给出了数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bootstrap Lower Confidence Limits of Superstructure Process Capability Indices for Esscher-Transformed Laplace Distribution
Abstract This article is a comparative study between the parametric asymptotic lower confidence limits and bootstrap lower confidence limits for the basic quantile based process capability indices based on the unified super-structure C N p ⁢ ( u , v ) {C_{N_{p}}(u,v)} when the distribution of the quality characteristic follows an asymmetric non-normal distribution. We illustrate this method when the distribution of the quality characteristic is a member of the family of Esscher-transformed Laplace models introduced by S. George and D. George [11]. We obtain the bias corrected and accelerated (BCa) bootstrap confidence intervals of C N p ⁢ ( u , v ) {C_{N_{p}}(u,v)} , which provide lower confidence intervals with coverage probability nearer to the nominal value compared to the asymptotic confidence intervals. We conclude that for asymmetric and peaked processes, the BCa confidence interval is a better alternative compared to the usual confidence intervals under the assumption that the quality characteristic follows a Gaussian type distribution. Numerical examples are given based on some real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastics and Quality Control
Stochastics and Quality Control Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信