J. P. Drees, Lukas Stratmann, Fabian Bronner, Max Bartunik, J. Kirchner, H. Unterweger, F. Dressler
{"title":"宏观分子通讯的有效模拟:波戈纳模拟器","authors":"J. P. Drees, Lukas Stratmann, Fabian Bronner, Max Bartunik, J. Kirchner, H. Unterweger, F. Dressler","doi":"10.1145/3411295.3411297","DOIUrl":null,"url":null,"abstract":"Molecular communication in pipe networks is a novel technique for wireless data exchange. Simulating such networks accurately is difficult because of the complexity of fluid dynamics at centimeter scales, which existing molecular communication simulators do not model. The new simulator we present combines computational fluid dynamics simulation and particle movement predictions. It is optimized to be computationally efficient while offering a high degree of adaptability to complex fluid flows in larger pipe networks. We validate it by comparing the simulation with experimental results obtained in a real-world testbed.","PeriodicalId":93611,"journal":{"name":"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Efficient simulation of macroscopic molecular communication: the pogona simulator\",\"authors\":\"J. P. Drees, Lukas Stratmann, Fabian Bronner, Max Bartunik, J. Kirchner, H. Unterweger, F. Dressler\",\"doi\":\"10.1145/3411295.3411297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular communication in pipe networks is a novel technique for wireless data exchange. Simulating such networks accurately is difficult because of the complexity of fluid dynamics at centimeter scales, which existing molecular communication simulators do not model. The new simulator we present combines computational fluid dynamics simulation and particle movement predictions. It is optimized to be computationally efficient while offering a high degree of adaptability to complex fluid flows in larger pipe networks. We validate it by comparing the simulation with experimental results obtained in a real-world testbed.\",\"PeriodicalId\":93611,\"journal\":{\"name\":\"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3411295.3411297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411295.3411297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient simulation of macroscopic molecular communication: the pogona simulator
Molecular communication in pipe networks is a novel technique for wireless data exchange. Simulating such networks accurately is difficult because of the complexity of fluid dynamics at centimeter scales, which existing molecular communication simulators do not model. The new simulator we present combines computational fluid dynamics simulation and particle movement predictions. It is optimized to be computationally efficient while offering a high degree of adaptability to complex fluid flows in larger pipe networks. We validate it by comparing the simulation with experimental results obtained in a real-world testbed.