从演示中学习视觉行动计划中的任务约束

Francesco Esposito, Christian Pek, Michael C. Welle, D. Kragic
{"title":"从演示中学习视觉行动计划中的任务约束","authors":"Francesco Esposito, Christian Pek, Michael C. Welle, D. Kragic","doi":"10.1109/RO-MAN50785.2021.9515548","DOIUrl":null,"url":null,"abstract":"Visual planning approaches have shown great success for decision making tasks with no explicit model of the state space. Learning a suitable representation and constructing a latent space where planning can be performed allows non-experts to setup and plan motions by just providing images. However, learned latent spaces are usually not semantically-interpretable, and thus it is difficult to integrate task constraints. We propose a novel framework to determine whether plans satisfy constraints given demonstrations of policies that satisfy or violate the constraints. The demonstrations are realizations of Linear Temporal Logic formulas which are employed to train Long Short-Term Memory (LSTM) networks directly in the latent space representation. We demonstrate that our architecture enables designers to easily specify, compose and integrate task constraints and achieves high performance in terms of accuracy. Furthermore, this visual planning framework enables human interaction, coping the environment changes that a human worker may involve. We show the flexibility of the method on a box pushing task in a simulated warehouse setting with different task constraints.","PeriodicalId":6854,"journal":{"name":"2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN)","volume":"32 1","pages":"131-138"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning Task Constraints in Visual-Action Planning from Demonstrations\",\"authors\":\"Francesco Esposito, Christian Pek, Michael C. Welle, D. Kragic\",\"doi\":\"10.1109/RO-MAN50785.2021.9515548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual planning approaches have shown great success for decision making tasks with no explicit model of the state space. Learning a suitable representation and constructing a latent space where planning can be performed allows non-experts to setup and plan motions by just providing images. However, learned latent spaces are usually not semantically-interpretable, and thus it is difficult to integrate task constraints. We propose a novel framework to determine whether plans satisfy constraints given demonstrations of policies that satisfy or violate the constraints. The demonstrations are realizations of Linear Temporal Logic formulas which are employed to train Long Short-Term Memory (LSTM) networks directly in the latent space representation. We demonstrate that our architecture enables designers to easily specify, compose and integrate task constraints and achieves high performance in terms of accuracy. Furthermore, this visual planning framework enables human interaction, coping the environment changes that a human worker may involve. We show the flexibility of the method on a box pushing task in a simulated warehouse setting with different task constraints.\",\"PeriodicalId\":6854,\"journal\":{\"name\":\"2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN)\",\"volume\":\"32 1\",\"pages\":\"131-138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RO-MAN50785.2021.9515548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN50785.2021.9515548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

视觉规划方法在没有明确状态空间模型的决策任务中显示出巨大的成功。学习一个合适的表示和构建一个潜在的空间,在那里可以执行计划,允许非专业人员通过提供图像来设置和计划运动。然而,学习到的潜在空间通常是不可语义解释的,因此很难整合任务约束。我们提出了一个新的框架来确定计划是否满足约束,给出了满足或违反约束的政策的演示。该演示是线性时间逻辑公式的实现,该公式用于直接在潜在空间表示中训练长短期记忆(LSTM)网络。我们证明,我们的架构使设计人员能够轻松地指定、组合和集成任务约束,并在准确性方面实现高性能。此外,这种视觉规划框架使人类能够互动,应对人类工作人员可能涉及的环境变化。我们在具有不同任务约束的模拟仓库设置中展示了该方法在推箱任务上的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Task Constraints in Visual-Action Planning from Demonstrations
Visual planning approaches have shown great success for decision making tasks with no explicit model of the state space. Learning a suitable representation and constructing a latent space where planning can be performed allows non-experts to setup and plan motions by just providing images. However, learned latent spaces are usually not semantically-interpretable, and thus it is difficult to integrate task constraints. We propose a novel framework to determine whether plans satisfy constraints given demonstrations of policies that satisfy or violate the constraints. The demonstrations are realizations of Linear Temporal Logic formulas which are employed to train Long Short-Term Memory (LSTM) networks directly in the latent space representation. We demonstrate that our architecture enables designers to easily specify, compose and integrate task constraints and achieves high performance in terms of accuracy. Furthermore, this visual planning framework enables human interaction, coping the environment changes that a human worker may involve. We show the flexibility of the method on a box pushing task in a simulated warehouse setting with different task constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信