几何组合学与计算分子生物学:RNA序列的分支多面体

Elizabeth Drellich, Andrew Gainer-Dewar, H. Harrington, Qijun He, Christine E. Heitsch, Svetlana Poznanovi'c
{"title":"几何组合学与计算分子生物学:RNA序列的分支多面体","authors":"Elizabeth Drellich, Andrew Gainer-Dewar, H. Harrington, Qijun He, Christine E. Heitsch, Svetlana Poznanovi'c","doi":"10.1090/conm/685/13754","DOIUrl":null,"url":null,"abstract":"Questions in computational molecular biology generate various discrete optimization problems, such as DNA sequence alignment and RNA secondary structure prediction. However, the optimal solutions are fundamentally dependent on the parameters used in the objective functions. The goal of a parametric analysis is to elucidate such dependencies, especially as they pertain to the accuracy and robustness of the optimal solutions. Techniques from geometric combinatorics, including polytopes and their normal fans, have been used previously to give parametric analyses of simple models for DNA sequence alignment and RNA branching configurations. Here, we present a new computational framework, and proof-of-principle results, which give the first complete parametric analysis of the branching portion of the nearest neighbor thermodynamic model for secondary structure prediction for real RNA sequences.","PeriodicalId":8447,"journal":{"name":"arXiv: Biomolecules","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Geometric combinatorics and computational molecular biology: Branching polytopes for RNA sequences\",\"authors\":\"Elizabeth Drellich, Andrew Gainer-Dewar, H. Harrington, Qijun He, Christine E. Heitsch, Svetlana Poznanovi'c\",\"doi\":\"10.1090/conm/685/13754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Questions in computational molecular biology generate various discrete optimization problems, such as DNA sequence alignment and RNA secondary structure prediction. However, the optimal solutions are fundamentally dependent on the parameters used in the objective functions. The goal of a parametric analysis is to elucidate such dependencies, especially as they pertain to the accuracy and robustness of the optimal solutions. Techniques from geometric combinatorics, including polytopes and their normal fans, have been used previously to give parametric analyses of simple models for DNA sequence alignment and RNA branching configurations. Here, we present a new computational framework, and proof-of-principle results, which give the first complete parametric analysis of the branching portion of the nearest neighbor thermodynamic model for secondary structure prediction for real RNA sequences.\",\"PeriodicalId\":8447,\"journal\":{\"name\":\"arXiv: Biomolecules\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Biomolecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/685/13754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/685/13754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

计算分子生物学中的问题产生了各种离散优化问题,如DNA序列比对和RNA二级结构预测。然而,最优解基本上依赖于目标函数中使用的参数。参数分析的目标是阐明这些依赖关系,特别是当它们与最优解的准确性和鲁棒性有关时。来自几何组合学的技术,包括多面体和它们的正常扇形,已经被用来对DNA序列比对和RNA分支构型的简单模型进行参数分析。在这里,我们提出了一个新的计算框架和原理证明结果,首次给出了用于真实RNA序列二级结构预测的最近邻热力学模型分支部分的完整参数分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric combinatorics and computational molecular biology: Branching polytopes for RNA sequences
Questions in computational molecular biology generate various discrete optimization problems, such as DNA sequence alignment and RNA secondary structure prediction. However, the optimal solutions are fundamentally dependent on the parameters used in the objective functions. The goal of a parametric analysis is to elucidate such dependencies, especially as they pertain to the accuracy and robustness of the optimal solutions. Techniques from geometric combinatorics, including polytopes and their normal fans, have been used previously to give parametric analyses of simple models for DNA sequence alignment and RNA branching configurations. Here, we present a new computational framework, and proof-of-principle results, which give the first complete parametric analysis of the branching portion of the nearest neighbor thermodynamic model for secondary structure prediction for real RNA sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信