提出了一种分离呼吸音和心音的BSS方法

Yuki Kubota, Minoru Komatsu, H. Matsumoto
{"title":"提出了一种分离呼吸音和心音的BSS方法","authors":"Yuki Kubota, Minoru Komatsu, H. Matsumoto","doi":"10.1109/ISPACS48206.2019.8986389","DOIUrl":null,"url":null,"abstract":"Conventionally, there is a method to use auscultation when medical doctors diagnose a disease from heartbeats with heart noise. However, the respiratory sound and the heart sound are mixed. Further, it is difficult for the desired heart sound to be heard. For solving this problem, we propose a method to separate respiratory sound and heart sound based on blind source separation (BSS). In BSS method, we use a non-linear function corresponding to the probability distribution of source signals in order to separate. A distribution of the respiratory sound is a high-order sub-Gaussian distribution close to uniform distribution, a distribution of the heart sound is a super Gaussian distribution. In the conventional method, there is no non-linear function corresponding to both distribution. Therefore, in this paper, in order to separate the respiratory sound and the heart sound, we propose new non-linear function accurately separated from super Gaussian distribution through sub-Gaussian distribution to uniform distribution. Then, we build the BSS method based on the proposed non-linear function. We evaluate the proposed method by computer simulation.","PeriodicalId":6765,"journal":{"name":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"145 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proposal of BSS method to separate the respiratory sound and the heart sound\",\"authors\":\"Yuki Kubota, Minoru Komatsu, H. Matsumoto\",\"doi\":\"10.1109/ISPACS48206.2019.8986389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventionally, there is a method to use auscultation when medical doctors diagnose a disease from heartbeats with heart noise. However, the respiratory sound and the heart sound are mixed. Further, it is difficult for the desired heart sound to be heard. For solving this problem, we propose a method to separate respiratory sound and heart sound based on blind source separation (BSS). In BSS method, we use a non-linear function corresponding to the probability distribution of source signals in order to separate. A distribution of the respiratory sound is a high-order sub-Gaussian distribution close to uniform distribution, a distribution of the heart sound is a super Gaussian distribution. In the conventional method, there is no non-linear function corresponding to both distribution. Therefore, in this paper, in order to separate the respiratory sound and the heart sound, we propose new non-linear function accurately separated from super Gaussian distribution through sub-Gaussian distribution to uniform distribution. Then, we build the BSS method based on the proposed non-linear function. We evaluate the proposed method by computer simulation.\",\"PeriodicalId\":6765,\"journal\":{\"name\":\"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"145 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS48206.2019.8986389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS48206.2019.8986389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统上,当医生根据心跳和心脏噪音诊断疾病时,有一种方法是使用听诊。然而,呼吸音和心音是混合的。此外,想要听到想要的心音也很困难。为了解决这一问题,我们提出了一种基于盲源分离(BSS)的呼吸音和心音分离方法。在BSS方法中,我们使用一个与源信号的概率分布相对应的非线性函数来进行分离。呼吸音的分布是接近均匀分布的高阶亚高斯分布,心音的分布是超高斯分布。在传统的方法中,没有对应于这两个分布的非线性函数。因此,本文提出了一种新的非线性函数,可以将呼吸音和心音从超高斯分布精确地从亚高斯分布分离到均匀分布,从而实现呼吸音和心音的分离。然后,我们基于所提出的非线性函数建立了BSS方法。通过计算机仿真对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proposal of BSS method to separate the respiratory sound and the heart sound
Conventionally, there is a method to use auscultation when medical doctors diagnose a disease from heartbeats with heart noise. However, the respiratory sound and the heart sound are mixed. Further, it is difficult for the desired heart sound to be heard. For solving this problem, we propose a method to separate respiratory sound and heart sound based on blind source separation (BSS). In BSS method, we use a non-linear function corresponding to the probability distribution of source signals in order to separate. A distribution of the respiratory sound is a high-order sub-Gaussian distribution close to uniform distribution, a distribution of the heart sound is a super Gaussian distribution. In the conventional method, there is no non-linear function corresponding to both distribution. Therefore, in this paper, in order to separate the respiratory sound and the heart sound, we propose new non-linear function accurately separated from super Gaussian distribution through sub-Gaussian distribution to uniform distribution. Then, we build the BSS method based on the proposed non-linear function. We evaluate the proposed method by computer simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信