一种预测全球商品价格的深度学习方法

A. S. Elberawi, M. Belal
{"title":"一种预测全球商品价格的深度学习方法","authors":"A. S. Elberawi, M. Belal","doi":"10.54623/fue.fcij.6.1.4","DOIUrl":null,"url":null,"abstract":"Forecasting future values of time-series data is a critical task in many disciplines including financial planning and decision-making. Researchers and practitioners in statistics apply traditional statistical methods (such as ARMA, ARIMA, ES, and GARCH) for a long time with varying. accuracies. Deep learning provides more sophisticated and non-linear approximation that supersede traditional statistical methods in most cases. Deep learning methods require minimal features engineering compared to other methods; it adopts an end-to-end learning methodology. In addition, it can handle a huge amount of data and variables. Financial time series forecasting poses a challenge due to its high volatility and non-stationarity nature. This work presents a hybrid deep learning model based on recurrent neural network and Autoencoders techniques to forecast commodity materials' global prices. Results showbetter accuracy compared to traditional regression methods for short-term forecast horizons (1,2,3 and 7days).","PeriodicalId":100561,"journal":{"name":"Future Computing and Informatics Journal","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A DEEP LEARNING APPROACH FOR FORECASTING GLOBAL COMMODITIES PRICES\",\"authors\":\"A. S. Elberawi, M. Belal\",\"doi\":\"10.54623/fue.fcij.6.1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forecasting future values of time-series data is a critical task in many disciplines including financial planning and decision-making. Researchers and practitioners in statistics apply traditional statistical methods (such as ARMA, ARIMA, ES, and GARCH) for a long time with varying. accuracies. Deep learning provides more sophisticated and non-linear approximation that supersede traditional statistical methods in most cases. Deep learning methods require minimal features engineering compared to other methods; it adopts an end-to-end learning methodology. In addition, it can handle a huge amount of data and variables. Financial time series forecasting poses a challenge due to its high volatility and non-stationarity nature. This work presents a hybrid deep learning model based on recurrent neural network and Autoencoders techniques to forecast commodity materials' global prices. Results showbetter accuracy compared to traditional regression methods for short-term forecast horizons (1,2,3 and 7days).\",\"PeriodicalId\":100561,\"journal\":{\"name\":\"Future Computing and Informatics Journal\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Computing and Informatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54623/fue.fcij.6.1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Computing and Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54623/fue.fcij.6.1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

预测时间序列数据的未来价值是包括财务规划和决策在内的许多学科的关键任务。统计领域的研究者和实践者长期以来应用传统的统计方法(如ARMA、ARIMA、ES和GARCH),结果各不相同。精度。深度学习提供了更复杂和非线性的近似,在大多数情况下取代了传统的统计方法。与其他方法相比,深度学习方法需要最少的特征工程;它采用端到端学习方法。此外,它还可以处理大量的数据和变量。金融时间序列的高波动性和非平稳性给其预测带来了挑战。这项工作提出了一种基于循环神经网络和自动编码器技术的混合深度学习模型,用于预测商品材料的全球价格。结果表明,与传统回归方法相比,短期预测(1、2、3和7天)的精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A DEEP LEARNING APPROACH FOR FORECASTING GLOBAL COMMODITIES PRICES
Forecasting future values of time-series data is a critical task in many disciplines including financial planning and decision-making. Researchers and practitioners in statistics apply traditional statistical methods (such as ARMA, ARIMA, ES, and GARCH) for a long time with varying. accuracies. Deep learning provides more sophisticated and non-linear approximation that supersede traditional statistical methods in most cases. Deep learning methods require minimal features engineering compared to other methods; it adopts an end-to-end learning methodology. In addition, it can handle a huge amount of data and variables. Financial time series forecasting poses a challenge due to its high volatility and non-stationarity nature. This work presents a hybrid deep learning model based on recurrent neural network and Autoencoders techniques to forecast commodity materials' global prices. Results showbetter accuracy compared to traditional regression methods for short-term forecast horizons (1,2,3 and 7days).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信