平衡、约束凸最小化和不动点问题的一般解

IF 0.7 Q2 MATHEMATICS
M. Yazdi
{"title":"平衡、约束凸最小化和不动点问题的一般解","authors":"M. Yazdi","doi":"10.5556/J.TKJM.52.2021.3521","DOIUrl":null,"url":null,"abstract":"\n\n\nIn this paper, we propose a new iterative scheme with the help of the gradient- projection algorithm (GPA) for finding a common solution of an equilibrium problem, a constrained convex minimization problem, and a fixed point problem. Then, we prove some strong convergence theorems which improve and extend some recent results. Moreover, we give a numerical result to show the validity of our main theorem. \n\n\n","PeriodicalId":45776,"journal":{"name":"Tamkang Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Common Solution of Equilibrium, Constrained Convex Minimization, and Fixed Point Problems\",\"authors\":\"M. Yazdi\",\"doi\":\"10.5556/J.TKJM.52.2021.3521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n\\nIn this paper, we propose a new iterative scheme with the help of the gradient- projection algorithm (GPA) for finding a common solution of an equilibrium problem, a constrained convex minimization problem, and a fixed point problem. Then, we prove some strong convergence theorems which improve and extend some recent results. Moreover, we give a numerical result to show the validity of our main theorem. \\n\\n\\n\",\"PeriodicalId\":45776,\"journal\":{\"name\":\"Tamkang Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tamkang Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5556/J.TKJM.52.2021.3521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tamkang Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5556/J.TKJM.52.2021.3521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用梯度投影算法求解平衡问题、约束凸最小化问题和不动点问题公解的新迭代格式。然后,我们证明了一些强收敛定理,这些定理改进和推广了最近的一些结果。并给出了一个数值结果来证明主要定理的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Common Solution of Equilibrium, Constrained Convex Minimization, and Fixed Point Problems
In this paper, we propose a new iterative scheme with the help of the gradient- projection algorithm (GPA) for finding a common solution of an equilibrium problem, a constrained convex minimization problem, and a fixed point problem. Then, we prove some strong convergence theorems which improve and extend some recent results. Moreover, we give a numerical result to show the validity of our main theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
11
期刊介绍: To promote research interactions between local and overseas researchers, the Department has been publishing an international mathematics journal, the Tamkang Journal of Mathematics. The journal started as a biannual journal in 1970 and is devoted to high-quality original research papers in pure and applied mathematics. In 1985 it has become a quarterly journal. The four issues are out for distribution at the end of March, June, September and December. The articles published in Tamkang Journal of Mathematics cover diverse mathematical disciplines. Submission of papers comes from all over the world. All articles are subjected to peer review from an international pool of referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信