光滑极小模型上cscK度量的存在性

Zakarias Sjostrom Dyrefelt
{"title":"光滑极小模型上cscK度量的存在性","authors":"Zakarias Sjostrom Dyrefelt","doi":"10.2422/2036-2145.202005_021","DOIUrl":null,"url":null,"abstract":"Given a compact Kahler manifold $X$ it is interesting to ask whether it admits a constant scalar curvature Kahler (cscK) metric in at least one Kahler class $[\\omega] \\in H^{1,1}(X,\\mathbb{R})$. In this short note we show that there always exist cscK metrics on compact Kahler manifolds with nef canonical bundle, thus on all smooth minimal models, and also on the blowup of any such manifold. This confirms an expectation of Jian-Shi-Song (arXiv:1805.06863) and extends their main result from $K_X$ semi-ample to $K_X$ nef, with a direct proof that does not appeal to the Abundance conjecture.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Existence of cscK metrics on smooth minimal models\",\"authors\":\"Zakarias Sjostrom Dyrefelt\",\"doi\":\"10.2422/2036-2145.202005_021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a compact Kahler manifold $X$ it is interesting to ask whether it admits a constant scalar curvature Kahler (cscK) metric in at least one Kahler class $[\\\\omega] \\\\in H^{1,1}(X,\\\\mathbb{R})$. In this short note we show that there always exist cscK metrics on compact Kahler manifolds with nef canonical bundle, thus on all smooth minimal models, and also on the blowup of any such manifold. This confirms an expectation of Jian-Shi-Song (arXiv:1805.06863) and extends their main result from $K_X$ semi-ample to $K_X$ nef, with a direct proof that does not appeal to the Abundance conjecture.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202005_021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202005_021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

给定一个紧致Kahler流形$X$,有趣的问题是它是否在H^{1,1}(X,\mathbb{R})$中至少一个Kahler类$[\ ω] $中承认一个常数标量曲率Kahler (cscK)度规。在这篇简短的笔记中,我们证明了在具有nef正则束的紧Kahler流形上总是存在cscK度量,因此在所有光滑极小模型上,以及在任何这样的流形的放大上也是如此。这证实了Jian-Shi-Song (arXiv:1805.06863)的一个期望,并将他们的主要结果从$K_X$半样本扩展到$K_X$ nef,并使用了一个不依赖于丰度猜想的直接证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of cscK metrics on smooth minimal models
Given a compact Kahler manifold $X$ it is interesting to ask whether it admits a constant scalar curvature Kahler (cscK) metric in at least one Kahler class $[\omega] \in H^{1,1}(X,\mathbb{R})$. In this short note we show that there always exist cscK metrics on compact Kahler manifolds with nef canonical bundle, thus on all smooth minimal models, and also on the blowup of any such manifold. This confirms an expectation of Jian-Shi-Song (arXiv:1805.06863) and extends their main result from $K_X$ semi-ample to $K_X$ nef, with a direct proof that does not appeal to the Abundance conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信