用搜索引擎数据预测当下

H. Varian
{"title":"用搜索引擎数据预测当下","authors":"H. Varian","doi":"10.1145/2487575.2492150","DOIUrl":null,"url":null,"abstract":"Many businesses now have almost real time data available about their operations. This data can be helpful in contemporaneous prediction (\"nowcasting\") of various economic indicators. We illustrate how one can use Google search data to nowcast economic metrics of interest, and discuss some of the ramifications for research and policy. Our approach combines three Bayesian techniques: Kalman filtering, spike-and-slab regression, and model averaging. We use Kalman filtering to whiten the time series in question by removing the trend and seasonal behavior. Spike-and-slab regression is a Bayesian method for variable selection that works even in cases where the number of predictors is far larger than the number of observations. Finally, we use Markov Chain Monte Carlo methods to sample from the posterior distribution for our model; the final forecast is an average over thousands of draws from the posterior. An advantage of the Bayesian approach is that it allows us to specify informative priors that affect the number and type of predictors in a flexible way.","PeriodicalId":20472,"journal":{"name":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting the present with search engine data\",\"authors\":\"H. Varian\",\"doi\":\"10.1145/2487575.2492150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many businesses now have almost real time data available about their operations. This data can be helpful in contemporaneous prediction (\\\"nowcasting\\\") of various economic indicators. We illustrate how one can use Google search data to nowcast economic metrics of interest, and discuss some of the ramifications for research and policy. Our approach combines three Bayesian techniques: Kalman filtering, spike-and-slab regression, and model averaging. We use Kalman filtering to whiten the time series in question by removing the trend and seasonal behavior. Spike-and-slab regression is a Bayesian method for variable selection that works even in cases where the number of predictors is far larger than the number of observations. Finally, we use Markov Chain Monte Carlo methods to sample from the posterior distribution for our model; the final forecast is an average over thousands of draws from the posterior. An advantage of the Bayesian approach is that it allows us to specify informative priors that affect the number and type of predictors in a flexible way.\",\"PeriodicalId\":20472,\"journal\":{\"name\":\"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2487575.2492150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487575.2492150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现在,许多企业几乎可以获得有关其运营的实时数据。这些数据有助于对各种经济指标进行同期预测(“临近预测”)。我们说明了如何使用谷歌搜索数据来预测感兴趣的经济指标,并讨论了研究和政策的一些后果。我们的方法结合了三种贝叶斯技术:卡尔曼滤波、峰值-平板回归和模型平均。我们使用卡尔曼滤波通过去除趋势和季节行为来漂白所讨论的时间序列。柱状-板状回归是一种贝叶斯变量选择方法,即使在预测因子的数量远远大于观测值的情况下也有效。最后,我们使用马尔可夫链蒙特卡罗方法从我们的模型的后验分布中抽样;最后的预测是几千次后验的平均值。贝叶斯方法的一个优点是,它允许我们以灵活的方式指定影响预测器数量和类型的信息先验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the present with search engine data
Many businesses now have almost real time data available about their operations. This data can be helpful in contemporaneous prediction ("nowcasting") of various economic indicators. We illustrate how one can use Google search data to nowcast economic metrics of interest, and discuss some of the ramifications for research and policy. Our approach combines three Bayesian techniques: Kalman filtering, spike-and-slab regression, and model averaging. We use Kalman filtering to whiten the time series in question by removing the trend and seasonal behavior. Spike-and-slab regression is a Bayesian method for variable selection that works even in cases where the number of predictors is far larger than the number of observations. Finally, we use Markov Chain Monte Carlo methods to sample from the posterior distribution for our model; the final forecast is an average over thousands of draws from the posterior. An advantage of the Bayesian approach is that it allows us to specify informative priors that affect the number and type of predictors in a flexible way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信