马尔可夫跃迁半群的Wasserstein摄动

IF 1.5 Q2 PHYSICS, MATHEMATICAL
Sven Fuhrmann, M. Kupper, M. Nendel
{"title":"马尔可夫跃迁半群的Wasserstein摄动","authors":"Sven Fuhrmann, M. Kupper, M. Nendel","doi":"10.1214/22-aihp1270","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with a class of time-homogeneous continuous-time Markov processes with transition probabilities bearing a nonparametric uncertainty. The uncertainty is modeled by considering perturbations of the transition probabilities within a proximity in Wasserstein distance. As a limit over progressively finer time periods, on which the level of uncertainty scales proportionally, we obtain a convex semigroup satisfying a nonlinear PDE in a viscosity sense. A remarkable observation is that, in standard situations, the nonlinear transition operators arising from nonparametric uncertainty coincide with the ones related to parametric drift uncertainty. On the level of the generator, the uncertainty is reflected as an additive perturbation in terms of a convex functional of first order derivatives. We additionally provide sensitivity bounds for the convex semigroup relative to the reference model. The results are illustrated with Wasserstein perturbations of L\\'evy processes, infinite-dimensional Ornstein-Uhlenbeck processes, geometric Brownian motions, and Koopman semigroups.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Wasserstein perturbations of Markovian transition semigroups\",\"authors\":\"Sven Fuhrmann, M. Kupper, M. Nendel\",\"doi\":\"10.1214/22-aihp1270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we deal with a class of time-homogeneous continuous-time Markov processes with transition probabilities bearing a nonparametric uncertainty. The uncertainty is modeled by considering perturbations of the transition probabilities within a proximity in Wasserstein distance. As a limit over progressively finer time periods, on which the level of uncertainty scales proportionally, we obtain a convex semigroup satisfying a nonlinear PDE in a viscosity sense. A remarkable observation is that, in standard situations, the nonlinear transition operators arising from nonparametric uncertainty coincide with the ones related to parametric drift uncertainty. On the level of the generator, the uncertainty is reflected as an additive perturbation in terms of a convex functional of first order derivatives. We additionally provide sensitivity bounds for the convex semigroup relative to the reference model. The results are illustrated with Wasserstein perturbations of L\\\\'evy processes, infinite-dimensional Ornstein-Uhlenbeck processes, geometric Brownian motions, and Koopman semigroups.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aihp1270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aihp1270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 7

摘要

本文研究了一类转移概率具有非参数不确定性的时间齐次连续马尔可夫过程。不确定性通过考虑Wasserstein距离内邻近的转移概率的扰动来建模。作为一个在越来越细的时间段上的极限,在这个时间段上,不确定性水平按比例缩放,我们得到了一个满足粘性意义上的非线性偏微分方程的凸半群。一个值得注意的观察是,在标准情况下,由非参数不确定性引起的非线性转移算子与与参数漂移不确定性有关的非线性转移算子重合。在生成器的层面上,不确定性反映为一阶导数的凸泛函形式的加性扰动。我们还提供了凸半群相对于参考模型的灵敏度界。结果用L′evy过程的Wasserstein摄动、无限维Ornstein-Uhlenbeck过程、几何布朗运动和Koopman半群来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wasserstein perturbations of Markovian transition semigroups
In this paper, we deal with a class of time-homogeneous continuous-time Markov processes with transition probabilities bearing a nonparametric uncertainty. The uncertainty is modeled by considering perturbations of the transition probabilities within a proximity in Wasserstein distance. As a limit over progressively finer time periods, on which the level of uncertainty scales proportionally, we obtain a convex semigroup satisfying a nonlinear PDE in a viscosity sense. A remarkable observation is that, in standard situations, the nonlinear transition operators arising from nonparametric uncertainty coincide with the ones related to parametric drift uncertainty. On the level of the generator, the uncertainty is reflected as an additive perturbation in terms of a convex functional of first order derivatives. We additionally provide sensitivity bounds for the convex semigroup relative to the reference model. The results are illustrated with Wasserstein perturbations of L\'evy processes, infinite-dimensional Ornstein-Uhlenbeck processes, geometric Brownian motions, and Koopman semigroups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信