钢筋混凝土建筑屋面防水系统生命周期评价(LCA

Sukwon Ji, D. Kyung, Woojin Lee
{"title":"钢筋混凝土建筑屋面防水系统生命周期评价(LCA","authors":"Sukwon Ji, D. Kyung, Woojin Lee","doi":"10.12989/AER.2014.3.4.367","DOIUrl":null,"url":null,"abstract":"In this study, we investigated a life cycle assessment (LCA) of six roof-waterproofing systems [asphalt (C1), synthetic polymer-based sheet (C2), improved asphalt (C3), liquid applied membrane (C4), Metal sheet with asphalt sheet (N1), and liquid applied membrane with asphalt sheet (N2)]for reinforced concrete building using an architectural model. To acquire accurate and realistic LCA results, minimum units of material compositions for life cycle inventory and real data for compositions of waterproofing materials were used. Considering only materials and energy demands for waterproofing systems per square meter, higher greenhouse gas (GHG) emissions could be generated in the order of C1 > N2 > C4 > N1 > C2 > C3 during construction phase. However, the order was changed to C1 > C4 > C3 > N2 > N1 > C2, when the actual architecture model was applied to the roof based on each specifications. When an entire life cycle including construction, maintenance, and deconstruction were considered, the amount of GHG emission was in the order of C4 > C1 > C3 > N2 > C2 > N1. Consequently, N1 was the most environmental-friendly waterproofing system producing the lowest GHG emission. GHG emissions from maintenance phase accounted for 71.4%~78.3% among whole life cycle.","PeriodicalId":7287,"journal":{"name":"Advances in Environmental Research","volume":"145 1","pages":"367-377"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Life cycle assessment (LCA) of roof-waterproofing systems for reinforced concrete building\",\"authors\":\"Sukwon Ji, D. Kyung, Woojin Lee\",\"doi\":\"10.12989/AER.2014.3.4.367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigated a life cycle assessment (LCA) of six roof-waterproofing systems [asphalt (C1), synthetic polymer-based sheet (C2), improved asphalt (C3), liquid applied membrane (C4), Metal sheet with asphalt sheet (N1), and liquid applied membrane with asphalt sheet (N2)]for reinforced concrete building using an architectural model. To acquire accurate and realistic LCA results, minimum units of material compositions for life cycle inventory and real data for compositions of waterproofing materials were used. Considering only materials and energy demands for waterproofing systems per square meter, higher greenhouse gas (GHG) emissions could be generated in the order of C1 > N2 > C4 > N1 > C2 > C3 during construction phase. However, the order was changed to C1 > C4 > C3 > N2 > N1 > C2, when the actual architecture model was applied to the roof based on each specifications. When an entire life cycle including construction, maintenance, and deconstruction were considered, the amount of GHG emission was in the order of C4 > C1 > C3 > N2 > C2 > N1. Consequently, N1 was the most environmental-friendly waterproofing system producing the lowest GHG emission. GHG emissions from maintenance phase accounted for 71.4%~78.3% among whole life cycle.\",\"PeriodicalId\":7287,\"journal\":{\"name\":\"Advances in Environmental Research\",\"volume\":\"145 1\",\"pages\":\"367-377\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Environmental Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12989/AER.2014.3.4.367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Environmental Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/AER.2014.3.4.367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项研究中,我们使用建筑模型对钢筋混凝土建筑的六种屋顶防水系统[沥青(C1)、合成聚合物基板(C2)、改良沥青(C3)、液体涂膜(C4)、金属板与沥青板(N1)和液体涂膜与沥青板(N2)]进行了生命周期评估(LCA)。为了获得准确和真实的LCA结果,使用了生命周期清单中材料成分的最小单位和防水材料成分的真实数据。仅考虑每平方米防水系统的材料和能源需求,施工阶段温室气体排放量的大小为C1 > N2 > C4 > N1 > C2 > C3。然而,当根据每个规格将实际的建筑模型应用于屋顶时,顺序改为C1 > C4 > C3 > N2 > N1 > C2。在整个生命周期(包括建设、维护和拆除)中,温室气体排放量为C4 > C1 > C3 > N2 > C2 > N1。因此,N1是最环保的防水体系,产生的温室气体排放量最低。维护阶段的温室气体排放量占全生命周期的71.4%~78.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Life cycle assessment (LCA) of roof-waterproofing systems for reinforced concrete building
In this study, we investigated a life cycle assessment (LCA) of six roof-waterproofing systems [asphalt (C1), synthetic polymer-based sheet (C2), improved asphalt (C3), liquid applied membrane (C4), Metal sheet with asphalt sheet (N1), and liquid applied membrane with asphalt sheet (N2)]for reinforced concrete building using an architectural model. To acquire accurate and realistic LCA results, minimum units of material compositions for life cycle inventory and real data for compositions of waterproofing materials were used. Considering only materials and energy demands for waterproofing systems per square meter, higher greenhouse gas (GHG) emissions could be generated in the order of C1 > N2 > C4 > N1 > C2 > C3 during construction phase. However, the order was changed to C1 > C4 > C3 > N2 > N1 > C2, when the actual architecture model was applied to the roof based on each specifications. When an entire life cycle including construction, maintenance, and deconstruction were considered, the amount of GHG emission was in the order of C4 > C1 > C3 > N2 > C2 > N1. Consequently, N1 was the most environmental-friendly waterproofing system producing the lowest GHG emission. GHG emissions from maintenance phase accounted for 71.4%~78.3% among whole life cycle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信