无速度传感器异步电动机矢量速度控制的线性化综合

Q3 Energy
O. F. Opeiko
{"title":"无速度传感器异步电动机矢量速度控制的线性化综合","authors":"O. F. Opeiko","doi":"10.21122/1029-7448-2022-65-2-103-114","DOIUrl":null,"url":null,"abstract":"The aim of the work was parametric synthesis of vector sensorless (i. e. without speed sensor) control of an electric drive with an induction motor. The structure of the system is based on the application of an adaptive model for estimating the rotor flow coupling vector and velocity. The speed is estimated by the mismatch of the real stator current and the current value calculated in the model. Stability is guaranteed in this well-known structure, obtained on the basis of Lyapunov functions, but it remains problematic to calculate the parameters of regulators and an adaptive model to ensure high-quality dynamics of the system. For a vector control system of an induction electric motor without a speed sensor with an adaptive model, a linearized structure in a synchronously rotating coordinate system was proposed. This makes it possible to calculate control parameters using the modal control method to ensure quality indicators in each of the closed circuits of the system. Such parametric synthesis is based on the assumption that the flow coupling of the rotor is maintained constant, and therefore the mutual influence of the flow coupling and torque control channels can be neglected. The calculation of the parameters of control (regulators and the adaptation channel) is based on the method of assigning the roots of characteristic contour polynomials in such a way that each internal contour has a higher speed than the external one with respect to it. The method is approximate, but it makes it possible to take into account the main cause-and-effect relationships in dynamics and obtain simple calculation expressions. The simulation of the system was carried out using a simulation model that takes into account the digital software-algorithmic method for generating a microcontroller control signal, as well as electromagnetic processes under conditions of pulse-width modulation in an electric energy converter and an electric motor, the use of the values of the rotor flow coupling vector estimated by the model in coordinate transformations of the system, the formation of a spatial vector of the converter voltage. The analysis of the synthesized speed control system by the simulation method has confirmed the effectiveness of the proposed method of parametric synthesis and the acceptable accuracy of speed estimation.","PeriodicalId":52141,"journal":{"name":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","volume":"2014 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis Based on Linearization of Vector Speed Control of an Induction Motor without a Speed Sensor\",\"authors\":\"O. F. Opeiko\",\"doi\":\"10.21122/1029-7448-2022-65-2-103-114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the work was parametric synthesis of vector sensorless (i. e. without speed sensor) control of an electric drive with an induction motor. The structure of the system is based on the application of an adaptive model for estimating the rotor flow coupling vector and velocity. The speed is estimated by the mismatch of the real stator current and the current value calculated in the model. Stability is guaranteed in this well-known structure, obtained on the basis of Lyapunov functions, but it remains problematic to calculate the parameters of regulators and an adaptive model to ensure high-quality dynamics of the system. For a vector control system of an induction electric motor without a speed sensor with an adaptive model, a linearized structure in a synchronously rotating coordinate system was proposed. This makes it possible to calculate control parameters using the modal control method to ensure quality indicators in each of the closed circuits of the system. Such parametric synthesis is based on the assumption that the flow coupling of the rotor is maintained constant, and therefore the mutual influence of the flow coupling and torque control channels can be neglected. The calculation of the parameters of control (regulators and the adaptation channel) is based on the method of assigning the roots of characteristic contour polynomials in such a way that each internal contour has a higher speed than the external one with respect to it. The method is approximate, but it makes it possible to take into account the main cause-and-effect relationships in dynamics and obtain simple calculation expressions. The simulation of the system was carried out using a simulation model that takes into account the digital software-algorithmic method for generating a microcontroller control signal, as well as electromagnetic processes under conditions of pulse-width modulation in an electric energy converter and an electric motor, the use of the values of the rotor flow coupling vector estimated by the model in coordinate transformations of the system, the formation of a spatial vector of the converter voltage. The analysis of the synthesized speed control system by the simulation method has confirmed the effectiveness of the proposed method of parametric synthesis and the acceptable accuracy of speed estimation.\",\"PeriodicalId\":52141,\"journal\":{\"name\":\"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations\",\"volume\":\"2014 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21122/1029-7448-2022-65-2-103-114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/1029-7448-2022-65-2-103-114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

工作的目的是参数合成矢量传感器无(即没有速度传感器)控制的电力驱动与感应电机。该系统的结构是基于应用自适应模型来估计转子流动耦合矢量和速度。通过定子实际电流与模型中计算的电流值的不匹配来估计转速。在这个众所周知的结构中,稳定性得到了保证,它是基于Lyapunov函数得到的,但仍然存在计算调节器参数和自适应模型以确保系统的高质量动力学的问题。针对无速度传感器的异步电动机矢量控制系统,提出了一种具有自适应模型的同步旋转坐标系线性化结构。这使得使用模态控制方法计算控制参数成为可能,以确保系统每个闭合回路的质量指标。这种参数综合是基于转子流量耦合保持恒定的假设,因此可以忽略流量耦合和转矩控制通道的相互影响。控制参数(调节器和自适应通道)的计算基于特征轮廓多项式的根分配方法,使得每个内部轮廓相对于它具有比外部轮廓更高的速度。该方法是近似的,但它可以考虑动力学中的主要因果关系,并得到简单的计算表达式。利用仿真模型对系统进行了仿真,该仿真模型考虑了产生微控制器控制信号的数字软件算法方法,以及电能转换器和电动机在脉宽调制条件下的电磁过程,利用该模型估计的转子流耦合矢量值对系统进行了坐标变换。转换器电压的空间矢量的形成。用仿真方法对综合速度控制系统进行了分析,验证了所提出的参数综合方法的有效性和速度估计的可接受精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis Based on Linearization of Vector Speed Control of an Induction Motor without a Speed Sensor
The aim of the work was parametric synthesis of vector sensorless (i. e. without speed sensor) control of an electric drive with an induction motor. The structure of the system is based on the application of an adaptive model for estimating the rotor flow coupling vector and velocity. The speed is estimated by the mismatch of the real stator current and the current value calculated in the model. Stability is guaranteed in this well-known structure, obtained on the basis of Lyapunov functions, but it remains problematic to calculate the parameters of regulators and an adaptive model to ensure high-quality dynamics of the system. For a vector control system of an induction electric motor without a speed sensor with an adaptive model, a linearized structure in a synchronously rotating coordinate system was proposed. This makes it possible to calculate control parameters using the modal control method to ensure quality indicators in each of the closed circuits of the system. Such parametric synthesis is based on the assumption that the flow coupling of the rotor is maintained constant, and therefore the mutual influence of the flow coupling and torque control channels can be neglected. The calculation of the parameters of control (regulators and the adaptation channel) is based on the method of assigning the roots of characteristic contour polynomials in such a way that each internal contour has a higher speed than the external one with respect to it. The method is approximate, but it makes it possible to take into account the main cause-and-effect relationships in dynamics and obtain simple calculation expressions. The simulation of the system was carried out using a simulation model that takes into account the digital software-algorithmic method for generating a microcontroller control signal, as well as electromagnetic processes under conditions of pulse-width modulation in an electric energy converter and an electric motor, the use of the values of the rotor flow coupling vector estimated by the model in coordinate transformations of the system, the formation of a spatial vector of the converter voltage. The analysis of the synthesized speed control system by the simulation method has confirmed the effectiveness of the proposed method of parametric synthesis and the acceptable accuracy of speed estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
32
审稿时长
8 weeks
期刊介绍: The most important objectives of the journal are the generalization of scientific and practical achievements in the field of power engineering, increase scientific and practical skills as researchers and industry representatives. Scientific concept publications include the publication of a modern national and international research and achievements in areas such as general energetic, electricity, thermal energy, construction, environmental issues energy, energy economy, etc. The journal publishes the results of basic research and the advanced achievements of practices aimed at improving the efficiency of the functioning of the energy sector, reduction of losses in electricity and heat networks, improving the reliability of electrical protection systems, the stability of the energetic complex, literature reviews on a wide range of energy issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信