{"title":"某些图的Sombor指数","authors":"Nima Ghanbari, S. Alikhani","doi":"10.22052/IJMC.2021.242106.1547","DOIUrl":null,"url":null,"abstract":"Let $G=(V,E)$ be a finite simple graph. The Sombor index $SO(G)$ of $G$ is defined as $sum_{uvin E(G)}sqrt{d_u^2+d_v^2}$, where $d_u$ is the degree of vertex $u$ in $G$. In this paper, we study this index for certain graphs and we examine the effects on $SO(G)$ when $G$ is modified by operations on vertex and edge of $G$. Also we present bounds for the Sombor index of join and corona product of two graphs.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Sombor index of certain graphs\",\"authors\":\"Nima Ghanbari, S. Alikhani\",\"doi\":\"10.22052/IJMC.2021.242106.1547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G=(V,E)$ be a finite simple graph. The Sombor index $SO(G)$ of $G$ is defined as $sum_{uvin E(G)}sqrt{d_u^2+d_v^2}$, where $d_u$ is the degree of vertex $u$ in $G$. In this paper, we study this index for certain graphs and we examine the effects on $SO(G)$ when $G$ is modified by operations on vertex and edge of $G$. Also we present bounds for the Sombor index of join and corona product of two graphs.\",\"PeriodicalId\":14545,\"journal\":{\"name\":\"Iranian journal of mathematical chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian journal of mathematical chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/IJMC.2021.242106.1547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2021.242106.1547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Let $G=(V,E)$ be a finite simple graph. The Sombor index $SO(G)$ of $G$ is defined as $sum_{uvin E(G)}sqrt{d_u^2+d_v^2}$, where $d_u$ is the degree of vertex $u$ in $G$. In this paper, we study this index for certain graphs and we examine the effects on $SO(G)$ when $G$ is modified by operations on vertex and edge of $G$. Also we present bounds for the Sombor index of join and corona product of two graphs.