QSAR研究抗疟活性与青蒿素-血红素结合特性的对接计算。

Somsak Tonmunphean, V. Parasuk, S. Kokpol
{"title":"QSAR研究抗疟活性与青蒿素-血红素结合特性的对接计算。","authors":"Somsak Tonmunphean, V. Parasuk, S. Kokpol","doi":"10.1002/1521-3838(200012)19:5<475::AID-QSAR475>3.0.CO;2-3","DOIUrl":null,"url":null,"abstract":"The quantitative structure-activity relationships (QSAR) between antimalarial activities and artemisinin-heme binding properties were studied by means of docking calculations. Automated molecular dockings of 30 artemisinin derivatives to heme revealed a significant relationship between biological activity and binding energy (ra ˇ0:93) and less significantly with the O1-Fe distance (raˇ0:55). The QSAR models were constructed and the predicted biological activities were in good agreement with the corresponding experimental values. The docking also showed that artemisinin compounds approach heme by pointing O1 at the endoperoxide linkage toward the iron center, a mechanism controlled by the steric hindrance.","PeriodicalId":20818,"journal":{"name":"Quantitative Structure-activity Relationships","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"QSAR study of antimalarial activities and artemisinin-heme binding properties obtained from docking calculations.\",\"authors\":\"Somsak Tonmunphean, V. Parasuk, S. Kokpol\",\"doi\":\"10.1002/1521-3838(200012)19:5<475::AID-QSAR475>3.0.CO;2-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quantitative structure-activity relationships (QSAR) between antimalarial activities and artemisinin-heme binding properties were studied by means of docking calculations. Automated molecular dockings of 30 artemisinin derivatives to heme revealed a significant relationship between biological activity and binding energy (ra ˇ0:93) and less significantly with the O1-Fe distance (raˇ0:55). The QSAR models were constructed and the predicted biological activities were in good agreement with the corresponding experimental values. The docking also showed that artemisinin compounds approach heme by pointing O1 at the endoperoxide linkage toward the iron center, a mechanism controlled by the steric hindrance.\",\"PeriodicalId\":20818,\"journal\":{\"name\":\"Quantitative Structure-activity Relationships\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Structure-activity Relationships\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/1521-3838(200012)19:5<475::AID-QSAR475>3.0.CO;2-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Structure-activity Relationships","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/1521-3838(200012)19:5<475::AID-QSAR475>3.0.CO;2-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

通过对接计算,研究了抗疟活性与青蒿素-血红素结合特性之间的定量构效关系。30个青蒿素衍生物与血红素的自动分子对接表明,生物活性与结合能之间存在显著的关系(ra α 0∶93),与O1-Fe距离之间的关系不太显著(ra α 0∶55)。建立了QSAR模型,预测的生物活性与相应的实验值吻合较好。对接还表明,青蒿素化合物通过将内过氧化物键上的O1指向铁中心来接近血红素,这是一个由位阻控制的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QSAR study of antimalarial activities and artemisinin-heme binding properties obtained from docking calculations.
The quantitative structure-activity relationships (QSAR) between antimalarial activities and artemisinin-heme binding properties were studied by means of docking calculations. Automated molecular dockings of 30 artemisinin derivatives to heme revealed a significant relationship between biological activity and binding energy (ra ˇ0:93) and less significantly with the O1-Fe distance (raˇ0:55). The QSAR models were constructed and the predicted biological activities were in good agreement with the corresponding experimental values. The docking also showed that artemisinin compounds approach heme by pointing O1 at the endoperoxide linkage toward the iron center, a mechanism controlled by the steric hindrance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信