关于分数理想的长度

IF 0.4 Q4 MATHEMATICS
Edison Marcavillaca Nino de Guzm'an, A. Hefez
{"title":"关于分数理想的长度","authors":"Edison Marcavillaca Nino de Guzm'an, A. Hefez","doi":"10.5427/jsing.2020.21g","DOIUrl":null,"url":null,"abstract":"The main result in this paper is to supply a recursive formula, on the number of minimal primes, for the colength of a fractional ideal in terms of the maximal points of the value set of the ideal itself. The fractional ideals are taken in the class of complete admissible rings, a more general class of rings than those of algebroid curves. For such rings with two or three minimal primes, a closed formula for that colength is provided, so improving results by Barucci, D'Anna and Fr\\\"oberg.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Colength of Fractional Ideals\",\"authors\":\"Edison Marcavillaca Nino de Guzm'an, A. Hefez\",\"doi\":\"10.5427/jsing.2020.21g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main result in this paper is to supply a recursive formula, on the number of minimal primes, for the colength of a fractional ideal in terms of the maximal points of the value set of the ideal itself. The fractional ideals are taken in the class of complete admissible rings, a more general class of rings than those of algebroid curves. For such rings with two or three minimal primes, a closed formula for that colength is provided, so improving results by Barucci, D'Anna and Fr\\\\\\\"oberg.\",\"PeriodicalId\":44411,\"journal\":{\"name\":\"Journal of Singularities\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Singularities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5427/jsing.2020.21g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2020.21g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文的主要结果是给出了分数阶理想的最小素数长度的递推公式,它是由理想本身的值集的极大点来表示的。分数理想取于完全可容许环,这是一种比代数曲线更一般的环。对于具有两个或三个最小素数的这样的环,给出了该长度的封闭公式,从而改进了Barucci, D'Anna和Fr\ oberg的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Colength of Fractional Ideals
The main result in this paper is to supply a recursive formula, on the number of minimal primes, for the colength of a fractional ideal in terms of the maximal points of the value set of the ideal itself. The fractional ideals are taken in the class of complete admissible rings, a more general class of rings than those of algebroid curves. For such rings with two or three minimal primes, a closed formula for that colength is provided, so improving results by Barucci, D'Anna and Fr\"oberg.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信