N. Vetrekar, Ramachandra Raghavendra, A. Gaonkar, G. Naik, R. Gad
{"title":"扩展多光谱人脸识别在两个不同年龄组:一个实证研究","authors":"N. Vetrekar, Ramachandra Raghavendra, A. Gaonkar, G. Naik, R. Gad","doi":"10.1145/3009977.3010026","DOIUrl":null,"url":null,"abstract":"Face recognition has attained a greater importance in bio-metric authentication due to its non-intrusive property of identifying individuals at varying stand-off distance. Face recognition based on multi-spectral imaging has recently gained prime importance due to its ability to capture spatial and spectral information across the spectrum. Our first contribution in this paper is to use extended multi-spectral face recognition in two different age groups. The second contribution is to show empirically the performance of face recognition for two age groups. Thus, in this paper, we developed a multi-spectral imaging sensor to capture facial database for two different age groups (≤ 15years and ≥ 20years) at nine different spectral bands covering 530nm to 1000nm range. We then collected a new facial images corresponding to two different age groups comprises of 168 individuals. Extensive experimental evaluation is performed independently on two different age group databases using four different state-of-the-art face recognition algorithms. We evaluate the verification and identification rate across individual spectral bands and fused spectral band for two age groups. The obtained evaluation results shows higher recognition rate for age groups ≥ 20years than ≤ 15years, which indicates the variation in face recognition across the different age groups.","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"16 1","pages":"78:1-78:8"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Extended multi-spectral face recognition across two different age groups: an empirical study\",\"authors\":\"N. Vetrekar, Ramachandra Raghavendra, A. Gaonkar, G. Naik, R. Gad\",\"doi\":\"10.1145/3009977.3010026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face recognition has attained a greater importance in bio-metric authentication due to its non-intrusive property of identifying individuals at varying stand-off distance. Face recognition based on multi-spectral imaging has recently gained prime importance due to its ability to capture spatial and spectral information across the spectrum. Our first contribution in this paper is to use extended multi-spectral face recognition in two different age groups. The second contribution is to show empirically the performance of face recognition for two age groups. Thus, in this paper, we developed a multi-spectral imaging sensor to capture facial database for two different age groups (≤ 15years and ≥ 20years) at nine different spectral bands covering 530nm to 1000nm range. We then collected a new facial images corresponding to two different age groups comprises of 168 individuals. Extensive experimental evaluation is performed independently on two different age group databases using four different state-of-the-art face recognition algorithms. We evaluate the verification and identification rate across individual spectral bands and fused spectral band for two age groups. The obtained evaluation results shows higher recognition rate for age groups ≥ 20years than ≤ 15years, which indicates the variation in face recognition across the different age groups.\",\"PeriodicalId\":93806,\"journal\":{\"name\":\"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing\",\"volume\":\"16 1\",\"pages\":\"78:1-78:8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3009977.3010026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009977.3010026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extended multi-spectral face recognition across two different age groups: an empirical study
Face recognition has attained a greater importance in bio-metric authentication due to its non-intrusive property of identifying individuals at varying stand-off distance. Face recognition based on multi-spectral imaging has recently gained prime importance due to its ability to capture spatial and spectral information across the spectrum. Our first contribution in this paper is to use extended multi-spectral face recognition in two different age groups. The second contribution is to show empirically the performance of face recognition for two age groups. Thus, in this paper, we developed a multi-spectral imaging sensor to capture facial database for two different age groups (≤ 15years and ≥ 20years) at nine different spectral bands covering 530nm to 1000nm range. We then collected a new facial images corresponding to two different age groups comprises of 168 individuals. Extensive experimental evaluation is performed independently on two different age group databases using four different state-of-the-art face recognition algorithms. We evaluate the verification and identification rate across individual spectral bands and fused spectral band for two age groups. The obtained evaluation results shows higher recognition rate for age groups ≥ 20years than ≤ 15years, which indicates the variation in face recognition across the different age groups.