自定义模拟和混合信号电路参数合成的模块连接图辅助混合优化框架

Mohsen Hassanpourghadi, Rezwan A. Rasul, M. Chen
{"title":"自定义模拟和混合信号电路参数合成的模块连接图辅助混合优化框架","authors":"Mohsen Hassanpourghadi, Rezwan A. Rasul, M. Chen","doi":"10.1145/3456722","DOIUrl":null,"url":null,"abstract":"Analog and mixed-signal (AMS) computer-aided design tools are of increasing interest owing to demand for the wide range of AMS circuit specifications in the modern system on a chip and faster time to market requirement. Traditionally, to accelerate the design process, the AMS system is decomposed into smaller components (called modules ) such that the complexity and evaluation of each module are more manageable. However, this decomposition poses an interface problem, where the module’s input-output states deviate from when combined to construct the AMS system, and thus degrades the system expected performance. In this article, we develop a tool module-linking-graph assisted hybrid parameter search engine with neural networks (MOHSENN) to overcome these obstacles. We propose a module-linking-graph that enforces equality of the modules’ interfaces during the parameter search process and apply surrogate modeling of the AMS circuit via neural networks. Further, we propose a hybrid search consisting of a global optimization with fast neural network models and a local optimization with accurate SPICE models to expedite the parameter search process while maintaining the accuracy. To validate the effectiveness of the proposed approach, we apply MOHSENN to design a successive approximation register analog-to-digital converter in 65-nm CMOS technology. This demonstrated that the search time improves by a factor of 5 and 700 compared to conventional hierarchical and flat design approaches, respectively, with improved performance.","PeriodicalId":7063,"journal":{"name":"ACM Trans. Design Autom. Electr. Syst.","volume":"5 1","pages":"38:1-38:22"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Module-Linking Graph Assisted Hybrid Optimization Framework for Custom Analog and Mixed-Signal Circuit Parameter Synthesis\",\"authors\":\"Mohsen Hassanpourghadi, Rezwan A. Rasul, M. Chen\",\"doi\":\"10.1145/3456722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analog and mixed-signal (AMS) computer-aided design tools are of increasing interest owing to demand for the wide range of AMS circuit specifications in the modern system on a chip and faster time to market requirement. Traditionally, to accelerate the design process, the AMS system is decomposed into smaller components (called modules ) such that the complexity and evaluation of each module are more manageable. However, this decomposition poses an interface problem, where the module’s input-output states deviate from when combined to construct the AMS system, and thus degrades the system expected performance. In this article, we develop a tool module-linking-graph assisted hybrid parameter search engine with neural networks (MOHSENN) to overcome these obstacles. We propose a module-linking-graph that enforces equality of the modules’ interfaces during the parameter search process and apply surrogate modeling of the AMS circuit via neural networks. Further, we propose a hybrid search consisting of a global optimization with fast neural network models and a local optimization with accurate SPICE models to expedite the parameter search process while maintaining the accuracy. To validate the effectiveness of the proposed approach, we apply MOHSENN to design a successive approximation register analog-to-digital converter in 65-nm CMOS technology. This demonstrated that the search time improves by a factor of 5 and 700 compared to conventional hierarchical and flat design approaches, respectively, with improved performance.\",\"PeriodicalId\":7063,\"journal\":{\"name\":\"ACM Trans. Design Autom. Electr. Syst.\",\"volume\":\"5 1\",\"pages\":\"38:1-38:22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Design Autom. Electr. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3456722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Design Autom. Electr. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3456722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

模拟和混合信号(AMS)计算机辅助设计工具越来越引起人们的兴趣,这是由于现代芯片系统对广泛的AMS电路规格的需求和更快的上市时间要求。传统上,为了加速设计过程,AMS系统被分解成更小的组件(称为模块),这样每个模块的复杂性和评估更易于管理。然而,这种分解带来了一个接口问题,当组合在一起构建AMS系统时,模块的输入输出状态会偏离,从而降低了系统的预期性能。在本文中,我们开发了一种工具模块链接图辅助神经网络混合参数搜索引擎(MOHSENN)来克服这些障碍。我们提出了一个模块链接图,在参数搜索过程中强制模块接口相等,并通过神经网络对AMS电路进行代理建模。此外,我们提出了一种混合搜索,包括快速神经网络模型的全局优化和精确SPICE模型的局部优化,以加快参数搜索过程,同时保持准确性。为了验证所提出方法的有效性,我们应用MOHSENN设计了一个65纳米CMOS技术的连续逼近寄存器模数转换器。这表明,与传统的分层设计和平面设计方法相比,搜索时间分别提高了5倍和700倍,性能也有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Module-Linking Graph Assisted Hybrid Optimization Framework for Custom Analog and Mixed-Signal Circuit Parameter Synthesis
Analog and mixed-signal (AMS) computer-aided design tools are of increasing interest owing to demand for the wide range of AMS circuit specifications in the modern system on a chip and faster time to market requirement. Traditionally, to accelerate the design process, the AMS system is decomposed into smaller components (called modules ) such that the complexity and evaluation of each module are more manageable. However, this decomposition poses an interface problem, where the module’s input-output states deviate from when combined to construct the AMS system, and thus degrades the system expected performance. In this article, we develop a tool module-linking-graph assisted hybrid parameter search engine with neural networks (MOHSENN) to overcome these obstacles. We propose a module-linking-graph that enforces equality of the modules’ interfaces during the parameter search process and apply surrogate modeling of the AMS circuit via neural networks. Further, we propose a hybrid search consisting of a global optimization with fast neural network models and a local optimization with accurate SPICE models to expedite the parameter search process while maintaining the accuracy. To validate the effectiveness of the proposed approach, we apply MOHSENN to design a successive approximation register analog-to-digital converter in 65-nm CMOS technology. This demonstrated that the search time improves by a factor of 5 and 700 compared to conventional hierarchical and flat design approaches, respectively, with improved performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信