simmrank:基于相似性度量的页面排名方法

Shaojie Qiao, Tianrui Li, Hong Li, Yan Zhu, Jing Peng, Jiangtao Qiu
{"title":"simmrank:基于相似性度量的页面排名方法","authors":"Shaojie Qiao, Tianrui Li, Hong Li, Yan Zhu, Jing Peng, Jiangtao Qiu","doi":"10.1109/ISKE.2010.5680842","DOIUrl":null,"url":null,"abstract":"As the Web contains rich and convenient information, Web search engine is increasingly becoming the dominant information retrieving approach. In order to rank the query results of web pages in an effective and efficient fashion, we propose a new page rank algorithm based on similarity measure from the vector space model, called SimRank, to score web pages. Firstly, we propose a new similarity measure to compute the similarity of pages and apply it to partition a web database into several web social networks (WSNs). Secondly, we improve the traditional PageRank algorithm by taking into account the relevance of page to a given query. Thirdly, we design an efficient web crawler to download the web data. And finally, we perform experimental studies to evaluate the time efficiency and scoring accuracy of SimRank with other approaches.","PeriodicalId":6417,"journal":{"name":"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering","volume":"47 1","pages":"390-395"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"SimRank: A Page Rank approach based on similarity measure\",\"authors\":\"Shaojie Qiao, Tianrui Li, Hong Li, Yan Zhu, Jing Peng, Jiangtao Qiu\",\"doi\":\"10.1109/ISKE.2010.5680842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the Web contains rich and convenient information, Web search engine is increasingly becoming the dominant information retrieving approach. In order to rank the query results of web pages in an effective and efficient fashion, we propose a new page rank algorithm based on similarity measure from the vector space model, called SimRank, to score web pages. Firstly, we propose a new similarity measure to compute the similarity of pages and apply it to partition a web database into several web social networks (WSNs). Secondly, we improve the traditional PageRank algorithm by taking into account the relevance of page to a given query. Thirdly, we design an efficient web crawler to download the web data. And finally, we perform experimental studies to evaluate the time efficiency and scoring accuracy of SimRank with other approaches.\",\"PeriodicalId\":6417,\"journal\":{\"name\":\"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering\",\"volume\":\"47 1\",\"pages\":\"390-395\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE.2010.5680842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE.2010.5680842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

由于Web包含了丰富而便捷的信息,Web搜索引擎正日益成为占主导地位的信息检索方式。为了对网页查询结果进行有效的排序,本文提出了一种基于向量空间模型相似性度量的网页排序算法simmrank。首先,我们提出了一种新的相似度度量来计算页面的相似度,并将其应用于将web数据库划分为多个web社交网络(wsn)。其次,我们通过考虑页面与给定查询的相关性来改进传统的PageRank算法。第三,我们设计了一个高效的网络爬虫来下载网络数据。最后,我们进行了实验研究,以评估simmrank与其他方法的时间效率和评分准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SimRank: A Page Rank approach based on similarity measure
As the Web contains rich and convenient information, Web search engine is increasingly becoming the dominant information retrieving approach. In order to rank the query results of web pages in an effective and efficient fashion, we propose a new page rank algorithm based on similarity measure from the vector space model, called SimRank, to score web pages. Firstly, we propose a new similarity measure to compute the similarity of pages and apply it to partition a web database into several web social networks (WSNs). Secondly, we improve the traditional PageRank algorithm by taking into account the relevance of page to a given query. Thirdly, we design an efficient web crawler to download the web data. And finally, we perform experimental studies to evaluate the time efficiency and scoring accuracy of SimRank with other approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信