具有隐定义曲面界面的四面体的高阶数值正交

Tao Cui, W. Leng, Huaqing Liu, Linbo Zhang, Weiying Zheng
{"title":"具有隐定义曲面界面的四面体的高阶数值正交","authors":"Tao Cui, W. Leng, Huaqing Liu, Linbo Zhang, Weiying Zheng","doi":"10.1145/3372144","DOIUrl":null,"url":null,"abstract":"Given a shape regular tetrahedron and a curved surface that is defined implicitly by a nonlinear level set function and divides the tetrahedron into two sub-domains, a general-purpose, robust, and high-order numerical algorithm is proposed in this article for computing both volume integrals in the sub-domains and surface integrals on their common boundary. The algorithm uses a direct approach that decomposes 3D volume integrals or 2D surface integrals into multiple 1D integrals and computes the 1D integrals with Gaussian quadratures. It only requires finding roots of univariate nonlinear functions in given intervals and evaluating the integrand, the level set function, and the gradient of the level set function at given points. It can achieve arbitrarily high accuracy by increasing the orders of Gaussian quadratures, and it does not need extra a priori knowledge about the integrand and the level set function. The code for the algorithm is freely available in the open-source finite element toolbox Parallel Hierarchical Grid (PHG) and can serve as a basic building block for implementing 3D high-order numerical algorithms involving implicit interfaces or boundaries.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"32 1","pages":"1 - 18"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"High-order Numerical Quadratures in a Tetrahedron with an Implicitly Defined Curved Interface\",\"authors\":\"Tao Cui, W. Leng, Huaqing Liu, Linbo Zhang, Weiying Zheng\",\"doi\":\"10.1145/3372144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a shape regular tetrahedron and a curved surface that is defined implicitly by a nonlinear level set function and divides the tetrahedron into two sub-domains, a general-purpose, robust, and high-order numerical algorithm is proposed in this article for computing both volume integrals in the sub-domains and surface integrals on their common boundary. The algorithm uses a direct approach that decomposes 3D volume integrals or 2D surface integrals into multiple 1D integrals and computes the 1D integrals with Gaussian quadratures. It only requires finding roots of univariate nonlinear functions in given intervals and evaluating the integrand, the level set function, and the gradient of the level set function at given points. It can achieve arbitrarily high accuracy by increasing the orders of Gaussian quadratures, and it does not need extra a priori knowledge about the integrand and the level set function. The code for the algorithm is freely available in the open-source finite element toolbox Parallel Hierarchical Grid (PHG) and can serve as a basic building block for implementing 3D high-order numerical algorithms involving implicit interfaces or boundaries.\",\"PeriodicalId\":7036,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software (TOMS)\",\"volume\":\"32 1\",\"pages\":\"1 - 18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software (TOMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3372144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

给出一个形状正的四面体和一个由非线性水平集函数隐式定义并将四面体划分为两个子域的曲面,本文提出了一种通用的、鲁棒的高阶数值算法,用于计算子域中的体积积分和它们共同边界上的曲面积分。该算法采用直接的方法,将三维体积积分或二维表面积分分解为多个一维积分,并用高斯正交法计算一维积分。它只需要在给定区间内求单变量非线性函数的根,并在给定点处求被积函数、水平集函数和水平集函数的梯度。它可以通过增加高斯正交的阶数来达到任意高的精度,并且不需要额外的关于被积函数和水平集函数的先验知识。该算法的代码可以在开源有限元工具箱并行分层网格(PHG)中免费获得,并且可以作为实现涉及隐式接口或边界的3D高阶数值算法的基本构建块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-order Numerical Quadratures in a Tetrahedron with an Implicitly Defined Curved Interface
Given a shape regular tetrahedron and a curved surface that is defined implicitly by a nonlinear level set function and divides the tetrahedron into two sub-domains, a general-purpose, robust, and high-order numerical algorithm is proposed in this article for computing both volume integrals in the sub-domains and surface integrals on their common boundary. The algorithm uses a direct approach that decomposes 3D volume integrals or 2D surface integrals into multiple 1D integrals and computes the 1D integrals with Gaussian quadratures. It only requires finding roots of univariate nonlinear functions in given intervals and evaluating the integrand, the level set function, and the gradient of the level set function at given points. It can achieve arbitrarily high accuracy by increasing the orders of Gaussian quadratures, and it does not need extra a priori knowledge about the integrand and the level set function. The code for the algorithm is freely available in the open-source finite element toolbox Parallel Hierarchical Grid (PHG) and can serve as a basic building block for implementing 3D high-order numerical algorithms involving implicit interfaces or boundaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信