一类二维马尔可夫模型的解

Performance Pub Date : 1980-05-28 DOI:10.1145/800199.806175
G. Fayolle, P. King, I. Mitrani
{"title":"一类二维马尔可夫模型的解","authors":"G. Fayolle, P. King, I. Mitrani","doi":"10.1145/800199.806175","DOIUrl":null,"url":null,"abstract":"A class of two-dimensional Birth-and-Death processes, with applications in many modelling problems, is defined and analysed in the steady-state. These are processes whose instantaneous transition rates are state-dependent in a restricted way. Generating functions for the steady-state distribution are obtained by solving a functional equation in two variables. That solution method lends itself readily to numerical implementation. Some aspects of the numerical solution are discussed, using a particular model as an example.","PeriodicalId":32394,"journal":{"name":"Performance","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1980-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"The solution of certain two-dimensional markov models\",\"authors\":\"G. Fayolle, P. King, I. Mitrani\",\"doi\":\"10.1145/800199.806175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A class of two-dimensional Birth-and-Death processes, with applications in many modelling problems, is defined and analysed in the steady-state. These are processes whose instantaneous transition rates are state-dependent in a restricted way. Generating functions for the steady-state distribution are obtained by solving a functional equation in two variables. That solution method lends itself readily to numerical implementation. Some aspects of the numerical solution are discussed, using a particular model as an example.\",\"PeriodicalId\":32394,\"journal\":{\"name\":\"Performance\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1980-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800199.806175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800199.806175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

定义了一类二维生与死过程,并在稳态条件下对其进行了分析。这些过程的瞬时转换速率以一种有限的方式依赖于状态。通过求解双变量泛函方程得到稳态分布的生成函数。这种解法很容易用于数值实现。以某一特定模型为例,讨论了数值解的某些方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The solution of certain two-dimensional markov models
A class of two-dimensional Birth-and-Death processes, with applications in many modelling problems, is defined and analysed in the steady-state. These are processes whose instantaneous transition rates are state-dependent in a restricted way. Generating functions for the steady-state distribution are obtained by solving a functional equation in two variables. That solution method lends itself readily to numerical implementation. Some aspects of the numerical solution are discussed, using a particular model as an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信