{"title":"迈向统计隐私和效用的公理化","authors":"Daniel Kifer, Bing-Rong Lin","doi":"10.1145/1807085.1807106","DOIUrl":null,"url":null,"abstract":"\"Privacy\" and \"utility\" are words that frequently appear in the literature on statistical privacy. But what do these words really mean? In recent years, many problems with intuitive notions of privacy and utility have been uncovered. Thus more formal notions of privacy and utility, which are amenable to mathematical analysis, are needed. In this paper we present our initial work on an axiomatization of privacy and utility. In particular, we study how these concepts are affected by randomized algorithms. Our analysis yields new insights into the construction of both privacy definitions and mechanisms that generate data according to such definitions. In particular, it characterizes a class of relaxations of differential privacy and shows that desirable outputs of a differentially private mechanism are best interpreted as certain graphs rather than query answers or synthetic data.","PeriodicalId":92118,"journal":{"name":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","volume":"1 1","pages":"147-158"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"102","resultStr":"{\"title\":\"Towards an axiomatization of statistical privacy and utility\",\"authors\":\"Daniel Kifer, Bing-Rong Lin\",\"doi\":\"10.1145/1807085.1807106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"Privacy\\\" and \\\"utility\\\" are words that frequently appear in the literature on statistical privacy. But what do these words really mean? In recent years, many problems with intuitive notions of privacy and utility have been uncovered. Thus more formal notions of privacy and utility, which are amenable to mathematical analysis, are needed. In this paper we present our initial work on an axiomatization of privacy and utility. In particular, we study how these concepts are affected by randomized algorithms. Our analysis yields new insights into the construction of both privacy definitions and mechanisms that generate data according to such definitions. In particular, it characterizes a class of relaxations of differential privacy and shows that desirable outputs of a differentially private mechanism are best interpreted as certain graphs rather than query answers or synthetic data.\",\"PeriodicalId\":92118,\"journal\":{\"name\":\"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems\",\"volume\":\"1 1\",\"pages\":\"147-158\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"102\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1807085.1807106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1807085.1807106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards an axiomatization of statistical privacy and utility
"Privacy" and "utility" are words that frequently appear in the literature on statistical privacy. But what do these words really mean? In recent years, many problems with intuitive notions of privacy and utility have been uncovered. Thus more formal notions of privacy and utility, which are amenable to mathematical analysis, are needed. In this paper we present our initial work on an axiomatization of privacy and utility. In particular, we study how these concepts are affected by randomized algorithms. Our analysis yields new insights into the construction of both privacy definitions and mechanisms that generate data according to such definitions. In particular, it characterizes a class of relaxations of differential privacy and shows that desirable outputs of a differentially private mechanism are best interpreted as certain graphs rather than query answers or synthetic data.