低温超声冲击处理增强TiZrHfNbTa合金表面纳米结构性能

B. Mordyuk, N. Khripta, V. Odnosum, S. Kedrovsky, Liguo Zhao, D. Lesyk
{"title":"低温超声冲击处理增强TiZrHfNbTa合金表面纳米结构性能","authors":"B. Mordyuk, N. Khripta, V. Odnosum, S. Kedrovsky, Liguo Zhao, D. Lesyk","doi":"10.1109/NAP51885.2021.9568529","DOIUrl":null,"url":null,"abstract":"A multicomponent Ti28 Zr29 Hf28 Nb5 Ta10 alloy was subjected to ultrasonic impact treatment (UIT) carried out in the air (at room temperature) and in liquid nitrogen (at cryogenic temperature). X-ray diffraction (XRD) analysis shows that the UIT-induced severe plastic deformation did not change the single-bcc structure but results in a significant increase of dislocation density, grain refinement (the XRD-assessed grain size decreases down to ~25 nm after cryo-UIT), and formation of compressive residual stresses. Indentation tests show that the surface nanostructuring leads to the ~30% increase in the instrumental hardness of the cryo-UIT processed specimen (HIT ~5.4 GPa) and to a slight increase in elastic modulus (E ~90.5 GPa). The UIT processes also led to an increase in the corrosion potential and a decrease in the corrosion current density indicating the enhanced corrosion resistance in 0.9 NaCl physiological solution. The nanostructured surface was shown to experience uniform dissolution and quicker formation of the protective oxide layer.","PeriodicalId":6735,"journal":{"name":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"11 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Properties of TiZrHfNbTa Alloy by Surface Layers Nanostructuring Using Cryogenic Ultrasonic Impact Treatment\",\"authors\":\"B. Mordyuk, N. Khripta, V. Odnosum, S. Kedrovsky, Liguo Zhao, D. Lesyk\",\"doi\":\"10.1109/NAP51885.2021.9568529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multicomponent Ti28 Zr29 Hf28 Nb5 Ta10 alloy was subjected to ultrasonic impact treatment (UIT) carried out in the air (at room temperature) and in liquid nitrogen (at cryogenic temperature). X-ray diffraction (XRD) analysis shows that the UIT-induced severe plastic deformation did not change the single-bcc structure but results in a significant increase of dislocation density, grain refinement (the XRD-assessed grain size decreases down to ~25 nm after cryo-UIT), and formation of compressive residual stresses. Indentation tests show that the surface nanostructuring leads to the ~30% increase in the instrumental hardness of the cryo-UIT processed specimen (HIT ~5.4 GPa) and to a slight increase in elastic modulus (E ~90.5 GPa). The UIT processes also led to an increase in the corrosion potential and a decrease in the corrosion current density indicating the enhanced corrosion resistance in 0.9 NaCl physiological solution. The nanostructured surface was shown to experience uniform dissolution and quicker formation of the protective oxide layer.\",\"PeriodicalId\":6735,\"journal\":{\"name\":\"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)\",\"volume\":\"11 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAP51885.2021.9568529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAP51885.2021.9568529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对一种多组分Ti28 Zr29 Hf28 Nb5 Ta10合金进行了空气(室温)和液氮(低温)超声冲击处理(UIT)。x射线衍射(XRD)分析表明,低温加热引起的严重塑性变形并未改变单bcc结构,但导致位错密度显著增加,晶粒细化(低温加热后XRD评估的晶粒尺寸降至~25 nm),并形成压缩残余应力。压痕试验表明,表面纳米化使低温uit加工试样的仪器硬度提高了约30% (HIT ~5.4 GPa),弹性模量略有增加(E ~90.5 GPa)。腐蚀电位升高,腐蚀电流密度降低,表明在0.9 NaCl生理溶液中的耐蚀性增强。纳米结构表面具有均匀溶解和快速形成氧化保护层的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Properties of TiZrHfNbTa Alloy by Surface Layers Nanostructuring Using Cryogenic Ultrasonic Impact Treatment
A multicomponent Ti28 Zr29 Hf28 Nb5 Ta10 alloy was subjected to ultrasonic impact treatment (UIT) carried out in the air (at room temperature) and in liquid nitrogen (at cryogenic temperature). X-ray diffraction (XRD) analysis shows that the UIT-induced severe plastic deformation did not change the single-bcc structure but results in a significant increase of dislocation density, grain refinement (the XRD-assessed grain size decreases down to ~25 nm after cryo-UIT), and formation of compressive residual stresses. Indentation tests show that the surface nanostructuring leads to the ~30% increase in the instrumental hardness of the cryo-UIT processed specimen (HIT ~5.4 GPa) and to a slight increase in elastic modulus (E ~90.5 GPa). The UIT processes also led to an increase in the corrosion potential and a decrease in the corrosion current density indicating the enhanced corrosion resistance in 0.9 NaCl physiological solution. The nanostructured surface was shown to experience uniform dissolution and quicker formation of the protective oxide layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信