基于双时间尺度优化的大规模MIMO信道和I/Q不平衡联合估计

Li Jia, Yinglei Teng, An Liu, V. Lau
{"title":"基于双时间尺度优化的大规模MIMO信道和I/Q不平衡联合估计","authors":"Li Jia, Yinglei Teng, An Liu, V. Lau","doi":"10.1109/GLOBECOM38437.2019.9013388","DOIUrl":null,"url":null,"abstract":"In this paper, joint estimation for channel and Inphase/Quadrature imbalance (IQI) is investigated in the downlink Frequency Division Duplexing (FDD) massive multiple-input multiple-output (MIMO) systems. First, exploiting the sparsity of massive MIMO channels and the timescale separation of channels and IQI, we derive a two-timescale sparse maximum a posterior (MAP) formulation for the joint estimation, where the IQI parameter is the long- term variable and the sparse channel is the short- term variable. Then we propose a two-timescale online joint sparse estimation (TOJSE) algorithm to solve the problem, which can converge to the stationary solutions of the original two-timescale non-convex stochastic optimization problem over time. Finally, simulations show that our proposed TOJSE algorithm can achieve significant gain over various baselines.","PeriodicalId":6868,"journal":{"name":"2019 IEEE Global Communications Conference (GLOBECOM)","volume":"49 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Estimation for Channel and I/Q Imbalance in Massive MIMO via Two-Timescale Optimization\",\"authors\":\"Li Jia, Yinglei Teng, An Liu, V. Lau\",\"doi\":\"10.1109/GLOBECOM38437.2019.9013388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, joint estimation for channel and Inphase/Quadrature imbalance (IQI) is investigated in the downlink Frequency Division Duplexing (FDD) massive multiple-input multiple-output (MIMO) systems. First, exploiting the sparsity of massive MIMO channels and the timescale separation of channels and IQI, we derive a two-timescale sparse maximum a posterior (MAP) formulation for the joint estimation, where the IQI parameter is the long- term variable and the sparse channel is the short- term variable. Then we propose a two-timescale online joint sparse estimation (TOJSE) algorithm to solve the problem, which can converge to the stationary solutions of the original two-timescale non-convex stochastic optimization problem over time. Finally, simulations show that our proposed TOJSE algorithm can achieve significant gain over various baselines.\",\"PeriodicalId\":6868,\"journal\":{\"name\":\"2019 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"49 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM38437.2019.9013388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM38437.2019.9013388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了下行频分双工(FDD)大规模多输入多输出(MIMO)系统中信道和相位/正交不平衡(IQI)的联合估计问题。首先,利用海量MIMO信道的稀疏性和信道与IQI的时间尺度分离,推导了联合估计的双时间尺度稀疏最大后验(MAP)公式,其中IQI参数为长期变量,而稀疏信道为短期变量。然后,我们提出了一种双时间尺度在线联合稀疏估计(TOJSE)算法来解决该问题,该算法可以随时间收敛到原双时间尺度非凸随机优化问题的平稳解。最后,仿真结果表明,我们提出的TOJSE算法可以在各种基线上获得显著的增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Estimation for Channel and I/Q Imbalance in Massive MIMO via Two-Timescale Optimization
In this paper, joint estimation for channel and Inphase/Quadrature imbalance (IQI) is investigated in the downlink Frequency Division Duplexing (FDD) massive multiple-input multiple-output (MIMO) systems. First, exploiting the sparsity of massive MIMO channels and the timescale separation of channels and IQI, we derive a two-timescale sparse maximum a posterior (MAP) formulation for the joint estimation, where the IQI parameter is the long- term variable and the sparse channel is the short- term variable. Then we propose a two-timescale online joint sparse estimation (TOJSE) algorithm to solve the problem, which can converge to the stationary solutions of the original two-timescale non-convex stochastic optimization problem over time. Finally, simulations show that our proposed TOJSE algorithm can achieve significant gain over various baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信