组合博弈论,组合

R. Atkey, Bruno Gavranovic, Neil Ghani, C. Kupke, J. Ledent, F. Forsberg
{"title":"组合博弈论,组合","authors":"R. Atkey, Bruno Gavranovic, Neil Ghani, C. Kupke, J. Ledent, F. Forsberg","doi":"10.4204/EPTCS.333.14","DOIUrl":null,"url":null,"abstract":"We present a new compositional approach to compositional game theory (CGT) based upon Arrows, a concept originally from functional programming, closely related to Tambara modules, and operators to build new Arrows from old. We model equilibria as a module over an Arrow and define an operator to build a new Arrow from such a module over an existing Arrow. We also model strategies as graded Arrows and define an operator which builds a new Arrow by taking the colimit of a graded Arrow. A final operator builds a graded Arrow from a graded bimodule. We use this compositional approach to CGT to show how known and previously unknown variants of open games can be proven to form symmetric monoidal categories.","PeriodicalId":11810,"journal":{"name":"essentia law Merchant Shipping Act 1995","volume":"10 1","pages":"198-214"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Compositional Game Theory, Compositionally\",\"authors\":\"R. Atkey, Bruno Gavranovic, Neil Ghani, C. Kupke, J. Ledent, F. Forsberg\",\"doi\":\"10.4204/EPTCS.333.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new compositional approach to compositional game theory (CGT) based upon Arrows, a concept originally from functional programming, closely related to Tambara modules, and operators to build new Arrows from old. We model equilibria as a module over an Arrow and define an operator to build a new Arrow from such a module over an existing Arrow. We also model strategies as graded Arrows and define an operator which builds a new Arrow by taking the colimit of a graded Arrow. A final operator builds a graded Arrow from a graded bimodule. We use this compositional approach to CGT to show how known and previously unknown variants of open games can be proven to form symmetric monoidal categories.\",\"PeriodicalId\":11810,\"journal\":{\"name\":\"essentia law Merchant Shipping Act 1995\",\"volume\":\"10 1\",\"pages\":\"198-214\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"essentia law Merchant Shipping Act 1995\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.333.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"essentia law Merchant Shipping Act 1995","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.333.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于arrow的组合博弈论(CGT)的新组合方法。arrow是一个源自函数式编程的概念,与Tambara模块密切相关,并使用算子从旧的arrow中构建新的arrow。我们将均衡建模为Arrow上的一个模块,并定义了一个算子,从这个模块在现有Arrow上构建一个新的Arrow。我们还将策略建模为分级箭头,并定义了一个通过取分级箭头的极限来构建新箭头的算子。最终运算符从分级双模构造分级Arrow。我们使用CGT的这种组合方法来展示如何证明开放博弈的已知和以前未知的变体可以形成对称的一元类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compositional Game Theory, Compositionally
We present a new compositional approach to compositional game theory (CGT) based upon Arrows, a concept originally from functional programming, closely related to Tambara modules, and operators to build new Arrows from old. We model equilibria as a module over an Arrow and define an operator to build a new Arrow from such a module over an existing Arrow. We also model strategies as graded Arrows and define an operator which builds a new Arrow by taking the colimit of a graded Arrow. A final operator builds a graded Arrow from a graded bimodule. We use this compositional approach to CGT to show how known and previously unknown variants of open games can be proven to form symmetric monoidal categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信