星际冰上分子的高能级从头算结合能分布:氟化氢

Q2 Physics and Astronomy
Giulia Bovolenta , Stefano Bovino , Esteban Vöhringer-Martinez , David A. Saez , Tommaso Grassi , Stefan Vogt-Geisse
{"title":"星际冰上分子的高能级从头算结合能分布:氟化氢","authors":"Giulia Bovolenta ,&nbsp;Stefano Bovino ,&nbsp;Esteban Vöhringer-Martinez ,&nbsp;David A. Saez ,&nbsp;Tommaso Grassi ,&nbsp;Stefan Vogt-Geisse","doi":"10.1016/j.molap.2020.100095","DOIUrl":null,"url":null,"abstract":"<div><p><span>The knowledge of the binding energy of molecules on astrophysically relevant ices can help to obtain an estimate of the desorption rate, i.e. the molecules residence time on the surface. This represents an important parameter for astrochemical models, and it is crucial to determine the chemical fate of interstellar complex organic molecules formed on the surface of dust grains and observed in the densest regions of the interstellar medium through rich rotational lines. In this work, we propose a new robust procedure to study the interaction of atoms and molecules with interstellar ices, based on </span><em>ab initio</em><span><span> molecular dynamics and </span>density functional theory, validated by high-level </span><em>ab initio</em><span> methods at a CCSD(T)/CBS level. We have applied this procedure to a simple but astronomically relevant molecule, hydrogen fluoride (HF), a promising tracer of the molecular content of galaxies. In total we found 13 unique equilibrium structures of HF binding to small water clusters of up to 4 molecules, with binding energies ranging from 1208 K to 7162 K (2.40 to 14.23 kcal </span><span><math><msup><mrow><mi>mol</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span><span>). We computed a 22-molecules model of amorphous solid water (ASW) surface using </span><em>ab initio</em> molecular dynamics simulations and carried out a systematic analysis of the binding sites of HF, in terms of binding modes and binding energies. Considering 10 different water clusters configurations, we found a binding energy distribution with an average value of <span><math><mrow><mn>5313</mn><mo>±</mo><mn>74</mn></mrow></math></span> K, and a dispersion of <span><math><mrow><mn>921</mn><mo>±</mo><mn>115</mn></mrow></math></span> K (<span><math><mrow><mn>10</mn><mo>.</mo><mn>56</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>15</mn></mrow></math></span> kcal <span><math><msup><mrow><mi>mol</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>), and a dispersion of <span><math><mrow><mn>921</mn><mo>±</mo><mn>115</mn></mrow></math></span> K (<span><math><mrow><mn>1</mn><mo>.</mo><mn>83</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>23</mn></mrow></math></span> kcal <span><math><msup><mrow><mi>mol</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span><span><span>). Finally, the effect of the electrostatic field of the 22 water molecules on the binding energies was investigated incrementally by symmetry adapted </span>perturbation theory, in order to gauge the effect of the water environment on the binding energies. The results indicate that the extent of the electrostatic interaction of HF with ASW depends strongly on the properties of the binding site on the water cluster. We expect that this work will provide a solid foundation for a systematic development of a binding energy distribution database of small molecules on astrophysically relevant surfaces.</span></p></div>","PeriodicalId":44164,"journal":{"name":"Molecular Astrophysics","volume":"21 ","pages":"Article 100095"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molap.2020.100095","citationCount":"10","resultStr":"{\"title\":\"High level ab initio binding energy distribution of molecules on interstellar ices: Hydrogen fluoride\",\"authors\":\"Giulia Bovolenta ,&nbsp;Stefano Bovino ,&nbsp;Esteban Vöhringer-Martinez ,&nbsp;David A. Saez ,&nbsp;Tommaso Grassi ,&nbsp;Stefan Vogt-Geisse\",\"doi\":\"10.1016/j.molap.2020.100095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The knowledge of the binding energy of molecules on astrophysically relevant ices can help to obtain an estimate of the desorption rate, i.e. the molecules residence time on the surface. This represents an important parameter for astrochemical models, and it is crucial to determine the chemical fate of interstellar complex organic molecules formed on the surface of dust grains and observed in the densest regions of the interstellar medium through rich rotational lines. In this work, we propose a new robust procedure to study the interaction of atoms and molecules with interstellar ices, based on </span><em>ab initio</em><span><span> molecular dynamics and </span>density functional theory, validated by high-level </span><em>ab initio</em><span> methods at a CCSD(T)/CBS level. We have applied this procedure to a simple but astronomically relevant molecule, hydrogen fluoride (HF), a promising tracer of the molecular content of galaxies. In total we found 13 unique equilibrium structures of HF binding to small water clusters of up to 4 molecules, with binding energies ranging from 1208 K to 7162 K (2.40 to 14.23 kcal </span><span><math><msup><mrow><mi>mol</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span><span>). We computed a 22-molecules model of amorphous solid water (ASW) surface using </span><em>ab initio</em> molecular dynamics simulations and carried out a systematic analysis of the binding sites of HF, in terms of binding modes and binding energies. Considering 10 different water clusters configurations, we found a binding energy distribution with an average value of <span><math><mrow><mn>5313</mn><mo>±</mo><mn>74</mn></mrow></math></span> K, and a dispersion of <span><math><mrow><mn>921</mn><mo>±</mo><mn>115</mn></mrow></math></span> K (<span><math><mrow><mn>10</mn><mo>.</mo><mn>56</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>15</mn></mrow></math></span> kcal <span><math><msup><mrow><mi>mol</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>), and a dispersion of <span><math><mrow><mn>921</mn><mo>±</mo><mn>115</mn></mrow></math></span> K (<span><math><mrow><mn>1</mn><mo>.</mo><mn>83</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>23</mn></mrow></math></span> kcal <span><math><msup><mrow><mi>mol</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span><span><span>). Finally, the effect of the electrostatic field of the 22 water molecules on the binding energies was investigated incrementally by symmetry adapted </span>perturbation theory, in order to gauge the effect of the water environment on the binding energies. The results indicate that the extent of the electrostatic interaction of HF with ASW depends strongly on the properties of the binding site on the water cluster. We expect that this work will provide a solid foundation for a systematic development of a binding energy distribution database of small molecules on astrophysically relevant surfaces.</span></p></div>\",\"PeriodicalId\":44164,\"journal\":{\"name\":\"Molecular Astrophysics\",\"volume\":\"21 \",\"pages\":\"Article 100095\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molap.2020.100095\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405675820300324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405675820300324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 10

摘要

了解与天体物理相关的冰上分子的结合能,有助于估计解吸速率,即分子在表面的停留时间。这是天体化学模型的一个重要参数,对于确定星际复杂有机分子的化学命运至关重要,这些分子形成于尘埃颗粒表面,并通过丰富的旋转谱线在星际介质最密集的区域观测到。在这项工作中,我们提出了一个新的强大的程序来研究原子和分子与星际冰的相互作用,基于从头算分子动力学和密度泛函理论,并在CCSD(T)/CBS水平上通过高级从头算方法验证。我们已经将这一过程应用于一种简单但与天文学相关的分子,氟化氢(HF),一种很有前途的星系分子含量的示踪剂。我们总共发现了13种独特的HF与4个分子的小水团结合的平衡结构,结合能范围从1208 K到7162 K(2.40到14.23 kcal mol−1)。利用从头算分子动力学模拟方法计算了22个非晶固体水(ASW)表面的分子模型,并从结合模式和结合能方面对HF的结合位点进行了系统的分析。考虑10种不同的水团簇构型,我们发现其结合能分布平均值为5313±74 K,色散为921±115 K(10.56±0.15 kcal mol−1),色散为921±115 K(1.83±0.23 kcal mol−1)。最后,利用对称自适应微扰理论逐步研究了22个水分子的静电场对结合能的影响,以衡量水环境对结合能的影响。结果表明,HF与ASW的静电相互作用程度很大程度上取决于水簇上结合位点的性质。我们期望这项工作将为天体物理相关表面小分子结合能分布数据库的系统开发提供坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High level ab initio binding energy distribution of molecules on interstellar ices: Hydrogen fluoride

High level ab initio binding energy distribution of molecules on interstellar ices: Hydrogen fluoride

The knowledge of the binding energy of molecules on astrophysically relevant ices can help to obtain an estimate of the desorption rate, i.e. the molecules residence time on the surface. This represents an important parameter for astrochemical models, and it is crucial to determine the chemical fate of interstellar complex organic molecules formed on the surface of dust grains and observed in the densest regions of the interstellar medium through rich rotational lines. In this work, we propose a new robust procedure to study the interaction of atoms and molecules with interstellar ices, based on ab initio molecular dynamics and density functional theory, validated by high-level ab initio methods at a CCSD(T)/CBS level. We have applied this procedure to a simple but astronomically relevant molecule, hydrogen fluoride (HF), a promising tracer of the molecular content of galaxies. In total we found 13 unique equilibrium structures of HF binding to small water clusters of up to 4 molecules, with binding energies ranging from 1208 K to 7162 K (2.40 to 14.23 kcal mol1). We computed a 22-molecules model of amorphous solid water (ASW) surface using ab initio molecular dynamics simulations and carried out a systematic analysis of the binding sites of HF, in terms of binding modes and binding energies. Considering 10 different water clusters configurations, we found a binding energy distribution with an average value of 5313±74 K, and a dispersion of 921±115 K (10.56±0.15 kcal mol1), and a dispersion of 921±115 K (1.83±0.23 kcal mol1). Finally, the effect of the electrostatic field of the 22 water molecules on the binding energies was investigated incrementally by symmetry adapted perturbation theory, in order to gauge the effect of the water environment on the binding energies. The results indicate that the extent of the electrostatic interaction of HF with ASW depends strongly on the properties of the binding site on the water cluster. We expect that this work will provide a solid foundation for a systematic development of a binding energy distribution database of small molecules on astrophysically relevant surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Astrophysics
Molecular Astrophysics ASTRONOMY & ASTROPHYSICS-
自引率
0.00%
发文量
0
期刊介绍: Molecular Astrophysics is a peer-reviewed journal containing full research articles, selected review articles, and thematic issues. Molecular Astrophysics is a new journal where researchers working in planetary and exoplanetary science, astrochemistry, astrobiology, spectroscopy, physical chemistry and chemical physics can meet and exchange their ideas. Understanding the origin and evolution of interstellar and circumstellar molecules is key to understanding the Universe around us and our place in it and has become a fundamental goal of modern astrophysics. Molecular Astrophysics aims to provide a platform for scientists studying the chemical processes that form and dissociate molecules, and control chemical abundances in the universe, particularly in Solar System objects including planets, moons, and comets, in the atmospheres of exoplanets, as well as in regions of star and planet formation in the interstellar medium of galaxies. Observational studies of the molecular universe are driven by a range of new space missions and large-scale scale observatories opening up. With the Spitzer Space Telescope, the Herschel Space Observatory, the Atacama Large Millimeter/submillimeter Array (ALMA), NASA''s Kepler mission, the Rosetta mission, and more major future facilities such as NASA''s James Webb Space Telescope and various missions to Mars, the journal taps into the expected new insights and the need to bring the various communities together on one platform. The journal aims to cover observational, laboratory as well as computational results in the galactic, extragalactic and intergalactic areas of our universe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信