图像分类的多尺度残差网络

X. Zhong, Oubo Gong, Wenxin Huang, Jingling Yuan, Bo Ma, R. W. Liu
{"title":"图像分类的多尺度残差网络","authors":"X. Zhong, Oubo Gong, Wenxin Huang, Jingling Yuan, Bo Ma, R. W. Liu","doi":"10.1109/ICASSP40776.2020.9053478","DOIUrl":null,"url":null,"abstract":"Multi-scale approach representing image objects at various levels-of-details has been applied to various computer vision tasks. Existing image classification approaches place more emphasis on multi-scale convolution kernels, and overlook multi-scale feature maps. As such, some shallower information of the network will not be fully utilized. In this paper, we propose the Multi-Scale Residual (MSR) module that integrates multi-scale feature maps of the underlying information to the last layer of Convolutional Neural Network. Our proposed method significantly enhances the characteristics of the information in the final classification. Extensive experiments conducted on CIFAR100, Tiny-ImageNet and large-scale CalTech-256 datasets demonstrate the effectiveness of our method compared with Res-Family.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"27 1","pages":"2023-2027"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-Scale Residual Network for Image Classification\",\"authors\":\"X. Zhong, Oubo Gong, Wenxin Huang, Jingling Yuan, Bo Ma, R. W. Liu\",\"doi\":\"10.1109/ICASSP40776.2020.9053478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-scale approach representing image objects at various levels-of-details has been applied to various computer vision tasks. Existing image classification approaches place more emphasis on multi-scale convolution kernels, and overlook multi-scale feature maps. As such, some shallower information of the network will not be fully utilized. In this paper, we propose the Multi-Scale Residual (MSR) module that integrates multi-scale feature maps of the underlying information to the last layer of Convolutional Neural Network. Our proposed method significantly enhances the characteristics of the information in the final classification. Extensive experiments conducted on CIFAR100, Tiny-ImageNet and large-scale CalTech-256 datasets demonstrate the effectiveness of our method compared with Res-Family.\",\"PeriodicalId\":13127,\"journal\":{\"name\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"27 1\",\"pages\":\"2023-2027\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP40776.2020.9053478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在不同细节层次上表示图像对象的多尺度方法已应用于各种计算机视觉任务。现有的图像分类方法更多地强调多尺度卷积核,而忽略了多尺度特征映射。这样,一些较浅的网络信息就不能被充分利用。在本文中,我们提出了多尺度残差(MSR)模块,它将底层信息的多尺度特征映射集成到卷积神经网络的最后一层。我们提出的方法显著增强了最终分类信息的特征。在CIFAR100、Tiny-ImageNet和大规模CalTech-256数据集上进行的大量实验表明,与Res-Family相比,我们的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Scale Residual Network for Image Classification
Multi-scale approach representing image objects at various levels-of-details has been applied to various computer vision tasks. Existing image classification approaches place more emphasis on multi-scale convolution kernels, and overlook multi-scale feature maps. As such, some shallower information of the network will not be fully utilized. In this paper, we propose the Multi-Scale Residual (MSR) module that integrates multi-scale feature maps of the underlying information to the last layer of Convolutional Neural Network. Our proposed method significantly enhances the characteristics of the information in the final classification. Extensive experiments conducted on CIFAR100, Tiny-ImageNet and large-scale CalTech-256 datasets demonstrate the effectiveness of our method compared with Res-Family.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信