多层次营销运作建模与优化

S. Hum, M. Parlar
{"title":"多层次营销运作建模与优化","authors":"S. Hum, M. Parlar","doi":"10.1002/nav.22031","DOIUrl":null,"url":null,"abstract":"This paper models the resource allocation problem arising in multilevel marketing (i.e., network) operations. The supervisor of a network of salespersons has a limited resource (her own time). She must decide on the (i) optimal number of “direct contacts” to recruit, train and develop; (ii) optimal number of lower levels she should be responsible for helping to hire, train and develop their own direct contacts, and (iii) optimal allocation of her time at each level in the network. We use tools from branching processes and find general results for the probability distribution of the number of lower level contacts with non‐identical distributions for any given number of initial contacts. Using these results, we present an optimization model for contacts with different characteristics and determine the optimal number of initial contacts, the number of lower levels and the supervisor's optimal effort at each level using tools from nonlinear programming, in particular, Kuhn‐Tucker conditions and Lagrangian duality. We generalize our models, (i) to allow for the randomness of time spent by the supervisor; and (ii) the possibility of supervisor generating her own direct sales. Several examples illustrate our findings.","PeriodicalId":19120,"journal":{"name":"Naval Research Logistics (NRL)","volume":"138 1","pages":"581 - 598"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and optimization of multilevel marketing operations\",\"authors\":\"S. Hum, M. Parlar\",\"doi\":\"10.1002/nav.22031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper models the resource allocation problem arising in multilevel marketing (i.e., network) operations. The supervisor of a network of salespersons has a limited resource (her own time). She must decide on the (i) optimal number of “direct contacts” to recruit, train and develop; (ii) optimal number of lower levels she should be responsible for helping to hire, train and develop their own direct contacts, and (iii) optimal allocation of her time at each level in the network. We use tools from branching processes and find general results for the probability distribution of the number of lower level contacts with non‐identical distributions for any given number of initial contacts. Using these results, we present an optimization model for contacts with different characteristics and determine the optimal number of initial contacts, the number of lower levels and the supervisor's optimal effort at each level using tools from nonlinear programming, in particular, Kuhn‐Tucker conditions and Lagrangian duality. We generalize our models, (i) to allow for the randomness of time spent by the supervisor; and (ii) the possibility of supervisor generating her own direct sales. Several examples illustrate our findings.\",\"PeriodicalId\":19120,\"journal\":{\"name\":\"Naval Research Logistics (NRL)\",\"volume\":\"138 1\",\"pages\":\"581 - 598\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naval Research Logistics (NRL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/nav.22031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naval Research Logistics (NRL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/nav.22031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对多层次营销(即网络)运营中出现的资源配置问题进行了建模。销售网络的主管只有有限的资源(她自己的时间)。她必须决定(1)招聘、培训和发展的“直接联系人”的最佳数量;(ii)她应该负责帮助雇佣、培训和发展自己的直接联系人的较低层级的最佳数量,以及(iii)她在网络中每个层级的时间的最佳分配。我们使用分支过程的工具,对任意给定数量的初始接触,找到具有非相同分布的低级接触数量的概率分布的一般结果。利用这些结果,我们提出了一个具有不同特征的接触的优化模型,并使用非线性规划的工具,特别是库恩-塔克条件和拉格朗日对偶性,确定了初始接触的最佳数量、较低层次的数量和每一层次的管理者的最优努力。我们概括我们的模型,(i)允许管理者花费的时间的随机性;(二)主管产生直销的可能性。有几个例子说明了我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and optimization of multilevel marketing operations
This paper models the resource allocation problem arising in multilevel marketing (i.e., network) operations. The supervisor of a network of salespersons has a limited resource (her own time). She must decide on the (i) optimal number of “direct contacts” to recruit, train and develop; (ii) optimal number of lower levels she should be responsible for helping to hire, train and develop their own direct contacts, and (iii) optimal allocation of her time at each level in the network. We use tools from branching processes and find general results for the probability distribution of the number of lower level contacts with non‐identical distributions for any given number of initial contacts. Using these results, we present an optimization model for contacts with different characteristics and determine the optimal number of initial contacts, the number of lower levels and the supervisor's optimal effort at each level using tools from nonlinear programming, in particular, Kuhn‐Tucker conditions and Lagrangian duality. We generalize our models, (i) to allow for the randomness of time spent by the supervisor; and (ii) the possibility of supervisor generating her own direct sales. Several examples illustrate our findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信