局部柯西数据中分段线性Schrödinger势的Lipschitz稳定性

Asymptot. Anal. Pub Date : 2017-02-14 DOI:10.3233/ASY-171457
G. Alessandrini, M. Hoop, Romina Gaburro, E. Sincich
{"title":"局部柯西数据中分段线性Schrödinger势的Lipschitz稳定性","authors":"G. Alessandrini, M. Hoop, Romina Gaburro, E. Sincich","doi":"10.3233/ASY-171457","DOIUrl":null,"url":null,"abstract":"We consider the inverse boundary value problem of determining the potential $q$ in the equation $\\Delta u + qu = 0$ in $\\Omega\\subset\\mathbb{R}^n$, from local Cauchy data. A result of global Lipschitz stability is obtained in dimension $n\\geq 3$ for potentials that are piecewise linear on a given partition of $\\Omega$. No sign, nor spectrum condition on $q$ is assumed, hence our treatment encompasses the reduced wave equation $\\Delta u + k^2c^{-2}u=0$ at fixed frequency $k$.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"6 1","pages":"115-149"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Lipschitz stability for a piecewise linear Schrödinger potential from local Cauchy data\",\"authors\":\"G. Alessandrini, M. Hoop, Romina Gaburro, E. Sincich\",\"doi\":\"10.3233/ASY-171457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the inverse boundary value problem of determining the potential $q$ in the equation $\\\\Delta u + qu = 0$ in $\\\\Omega\\\\subset\\\\mathbb{R}^n$, from local Cauchy data. A result of global Lipschitz stability is obtained in dimension $n\\\\geq 3$ for potentials that are piecewise linear on a given partition of $\\\\Omega$. No sign, nor spectrum condition on $q$ is assumed, hence our treatment encompasses the reduced wave equation $\\\\Delta u + k^2c^{-2}u=0$ at fixed frequency $k$.\",\"PeriodicalId\":8603,\"journal\":{\"name\":\"Asymptot. Anal.\",\"volume\":\"6 1\",\"pages\":\"115-149\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptot. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ASY-171457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-171457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

我们考虑了用局部柯西数据确定$\Omega\subset\mathbb{R}^n$方程$\Delta u + qu = 0$中势$q$的反边值问题。对于在$\Omega$的给定分区上分段线性的势,在$n\geq 3$维上得到了全局Lipschitz稳定性的结果。在$q$上没有符号,也没有频谱条件,因此我们的处理包含固定频率$k$的简化波动方程$\Delta u + k^2c^{-2}u=0$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lipschitz stability for a piecewise linear Schrödinger potential from local Cauchy data
We consider the inverse boundary value problem of determining the potential $q$ in the equation $\Delta u + qu = 0$ in $\Omega\subset\mathbb{R}^n$, from local Cauchy data. A result of global Lipschitz stability is obtained in dimension $n\geq 3$ for potentials that are piecewise linear on a given partition of $\Omega$. No sign, nor spectrum condition on $q$ is assumed, hence our treatment encompasses the reduced wave equation $\Delta u + k^2c^{-2}u=0$ at fixed frequency $k$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信