非结合非交换代数上的哈密顿算子及相关的微分代数Balinsky-Novikov、Riemann和Leibniz型结构

Q3 Mathematics
O. Artemovych, A. Balinsky, A. Prykarpatski
{"title":"非结合非交换代数上的哈密顿算子及相关的微分代数Balinsky-Novikov、Riemann和Leibniz型结构","authors":"O. Artemovych, A. Balinsky, A. Prykarpatski","doi":"10.15673/tmgc.v12i4.1554","DOIUrl":null,"url":null,"abstract":"We review main differential-algebraic structures \\ lying in background of \\ analytical constructing multi-component Hamiltonian operators as derivatives on suitably constructed loop Lie algebras, generated by nonassociative  noncommutative algebras. The related Balinsky-Novikov and \\ Leibniz type algebraic structures are derived, a new nonassociative \"Riemann\" algebra is constructed, deeply related with infinite multi-component Riemann type integrable hierarchies. An approach, based on the classical Lie-Poisson  structure on coadjoint orbits, closely related with those, analyzed in the present work and allowing effectively enough construction of Hamiltonian operators, is also briefly revisited. \\ As the compatible Hamiltonian operators are constructed by means of suitable central extentions of the adjacent weak Lie algebras, generated by the right Leibniz and Riemann type nonassociative and noncommutative algebras, the problem of their description requires a detailed investigation both of their structural properties and finite-dimensional representations of the right Leibniz algebras defined by the corresponding structural constraints. \\ Subject to these important  aspects we stop in the work mostly on the structural properties of the right Leibniz algebras, especially on their derivation algebras and their generalizations. We have also added a short Supplement within which we \\ revisited \\ the classical Poisson manifold approach, closely related to our construction of \\ Hamiltonian operators, generated by nonassociative and noncommutative algebras. In particular, \\ we presented its natural and simple generalization allowing effectively to describe  a wide class\\ of Lax type integrable nonlinear Kontsevich type Hamiltonian systems on associative noncommutative algebras.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hamiltonian operators and related differential-algebraic Balinsky-Novikov, Riemann and Leibniz type structures on nonassociative noncommutative algebras\",\"authors\":\"O. Artemovych, A. Balinsky, A. Prykarpatski\",\"doi\":\"10.15673/tmgc.v12i4.1554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We review main differential-algebraic structures \\\\ lying in background of \\\\ analytical constructing multi-component Hamiltonian operators as derivatives on suitably constructed loop Lie algebras, generated by nonassociative  noncommutative algebras. The related Balinsky-Novikov and \\\\ Leibniz type algebraic structures are derived, a new nonassociative \\\"Riemann\\\" algebra is constructed, deeply related with infinite multi-component Riemann type integrable hierarchies. An approach, based on the classical Lie-Poisson  structure on coadjoint orbits, closely related with those, analyzed in the present work and allowing effectively enough construction of Hamiltonian operators, is also briefly revisited. \\\\ As the compatible Hamiltonian operators are constructed by means of suitable central extentions of the adjacent weak Lie algebras, generated by the right Leibniz and Riemann type nonassociative and noncommutative algebras, the problem of their description requires a detailed investigation both of their structural properties and finite-dimensional representations of the right Leibniz algebras defined by the corresponding structural constraints. \\\\ Subject to these important  aspects we stop in the work mostly on the structural properties of the right Leibniz algebras, especially on their derivation algebras and their generalizations. We have also added a short Supplement within which we \\\\ revisited \\\\ the classical Poisson manifold approach, closely related to our construction of \\\\ Hamiltonian operators, generated by nonassociative and noncommutative algebras. In particular, \\\\ we presented its natural and simple generalization allowing effectively to describe  a wide class\\\\ of Lax type integrable nonlinear Kontsevich type Hamiltonian systems on associative noncommutative algebras.\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/tmgc.v12i4.1554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/tmgc.v12i4.1554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

在解析构造多分量哈密顿算子作为由非结合非交换代数生成的适当构造环李代数的导数的背景下,回顾了主要的微分代数结构。导出了相关的Balinsky-Novikov型和Leibniz型代数结构,构造了一个新的非结合的“Riemann”代数,它与无限多分量Riemann型可积层次密切相关。本文还简要回顾了一种基于伴随轨道上的经典李泊松结构的方法,这种方法与本工作中分析的方法密切相关,并且能够有效地构造哈密顿算子。由于相容哈密顿算子是由右莱布尼兹和黎曼型非结合和非交换代数生成的相邻弱李代数的适当中心扩展来构造的,因此它们的描述问题需要详细研究它们的结构性质和由相应结构约束定义的右莱布尼兹代数的有限维表示。根据这些重要的方面,我们的工作主要停留在正确的莱布尼茨代数的结构性质上,特别是它们的派生代数和它们的推广。我们还添加了一个简短的补充,其中我们重新审视了经典泊松流形方法,它与我们由非结合和非交换代数生成的哈密顿算子的构造密切相关。特别地,我们给出了它的自然和简单的推广,允许有效地描述结合非交换代数上的广义的Lax型可积非线性Kontsevich型哈密顿系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hamiltonian operators and related differential-algebraic Balinsky-Novikov, Riemann and Leibniz type structures on nonassociative noncommutative algebras
We review main differential-algebraic structures \ lying in background of \ analytical constructing multi-component Hamiltonian operators as derivatives on suitably constructed loop Lie algebras, generated by nonassociative  noncommutative algebras. The related Balinsky-Novikov and \ Leibniz type algebraic structures are derived, a new nonassociative "Riemann" algebra is constructed, deeply related with infinite multi-component Riemann type integrable hierarchies. An approach, based on the classical Lie-Poisson  structure on coadjoint orbits, closely related with those, analyzed in the present work and allowing effectively enough construction of Hamiltonian operators, is also briefly revisited. \ As the compatible Hamiltonian operators are constructed by means of suitable central extentions of the adjacent weak Lie algebras, generated by the right Leibniz and Riemann type nonassociative and noncommutative algebras, the problem of their description requires a detailed investigation both of their structural properties and finite-dimensional representations of the right Leibniz algebras defined by the corresponding structural constraints. \ Subject to these important  aspects we stop in the work mostly on the structural properties of the right Leibniz algebras, especially on their derivation algebras and their generalizations. We have also added a short Supplement within which we \ revisited \ the classical Poisson manifold approach, closely related to our construction of \ Hamiltonian operators, generated by nonassociative and noncommutative algebras. In particular, \ we presented its natural and simple generalization allowing effectively to describe  a wide class\ of Lax type integrable nonlinear Kontsevich type Hamiltonian systems on associative noncommutative algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the International Geometry Center
Proceedings of the International Geometry Center Mathematics-Geometry and Topology
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信